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abstract 
Automated molecular docking aims at predicting the possible interactions between two molecules. This method 
has proven useful in medicinal chemistry and drug discovery providing atomistic insights into molecular recognition. 
Over the last 20 years methods for molecular docking have been improved, yielding accurate results on pose 
prediction. Nonetheless, several aspects of molecular docking need revision due to changes in the paradigm 
of drug discovery. In the present article, we review the principles, techniques, and algorithms for docking with 
emphasis on protein-ligand docking for drug discovery. We also discuss current approaches to address major 
challenges of docking.
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Acoplamiento Molecular: Avances Recientes y Retos

resuMen 
El acoplamiento molecular automatizado tiene como objetivo proponer un modelo de unión entre dos moléculas. 
Este método ha sido útil en química farmacéutica y en el descubrimiento de nuevos fármacos por medio del 
entendimiento de las fuerzas de interacción involucradas en el reconocimiento molecular. Durante los últimos 
20 años se ha modificado extensamente la técnica de acoplamiento molecular dando resultados precisos en la 
predicción de los modos de unión. Sin embargo, hay algunas áreas que requieren ser mejoradas substancialmente. 
En este trabajo se revisan principios, técnicas y algoritmos usados en los programas computacionales del 
acoplamiento molecular con enfoque en la interacción proteína-ligando aplicado al descubrimiento de 
nuevos fármacos. También se discuten las estrategias dirigidas a solucionar los principales retos de esta técnica 
computacional.
Palabras Clave: descubrimiento de nuevos fármacos, diseño de fármacos asistido por computadora, quimioinformática, 
relaciones estructura-actividad.
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olecular docking is a computational method used to 
predict the interaction of two molecules generating a 
binding model. In many drug discovery applications, 
docking is done between a small molecule and a 

introduction

M
macromolecule for example, protein-ligand docking. More 
recently, docking is also applied to predict the binding mode 
between two macromolecules, for instance protein-protein 
docking.

Currently, molecular mechanics is the basis for most docking 
programs. Molecular mechanics involves the description of 
a polyatomic system using classical physics. Experimental 
parameters such as charges, torsional and geometrical angles 
are used to narrow down the difference between experimental 
data and molecular mechanics predictions (Lopes, Guvench 
& Mackerell, 2015). Due to shortcomings and limitations of 
experimental parameters, mathematical equations may often be 
parametrized on the basis of quantum-mechanical semiempirical 
and ab initio theoretical calculations. As such, molecular force 
fields are sets of equations with different parameters with the 
final purpose of describing the systems. As force fields may use 
different considerations and simplifications, the description of 
the system may be inaccurate due to the level of theory involved 
(classical physics).

Most force fields rely on five terms, all of which have a physical 
interpretation: potential energy, torsional terms, bond geometry, 
electrostatic terms, and Lenard-Jones potential (Monticelli 
& Tieleman, 2013). Examples of prominent force fields are 
AMBER, GROMOS, MMFF94, CHARMM, and UFF. An in-
depth discussion on force fields and their limitations is beyond 
the scope of this review but the following references provide 
for further reading (González, 2011; Guvench & MacKerell, 
2008; Lopes, Guvench & Mackerell, 2015).

With the use of force fields, molecular and protein modeling 
was accomplished in the early 1980s. A natural extension of 
these methods was the modeling of molecular processes such 
as protein-ligand binding. Two general methodologies were 
developed. First, the rigid body approach that is closely related to 
the classic model of Emil Fischer. In this model, the ligand and 
receptor are regarded as two independent bodies that recognize 
each other based on shape and volume. The second approach 
is flexible docking. This approach considers a reciprocal effect 
of protein-ligand recognition on the conformation of each 
part (Dastmalchi, 2016). Figure 1 schematizes the two main 
approaches for molecular docking.

Over the past 15 plus years, the number of publications 
associated with molecular docking has increased substantially. 
Figure 2 illustrates this point. The figure shows the number of 
publications since the year 2000 indexed in major search engines 
that are associated with the keyword “docking”. Unfortunately, 

the increased use in docking has been accompanied with a 
superficial application to computer-aided drug design (CADD), 
including the 1-click drug discovery (Saldívar-González, Prieto-
Martínez & Medina-Franco, 2017). Therefore, it is important 
to bear in mind that molecular docking has limitations as any 
other technique. In other words, it should be used carefully 
and consciously, complementing its application with other 
computational and experimental methods.

There are several servers, suites and programs available for 
molecular docking. Each tool uses different force fields and 
algorithms for pose generation, refinement, and calculation 
of receptor-ligand interactions. Table I presents a short list 
of major docking programs, including their algorithms and 
general information.

Despite the fact there are a large number of robust docking 
programs available, the reader should bear in mind that not 
all docking algorithms are suited for any given system (Cole, 
Davis, Jones & Sage, 2017). It is generally advisable to use 
more than one docking program: different studies have shown 
that, overall, taking a consensus from various docking protocols 
yields better assessment of protein ligand interactions and more 
reliable pose ranking (Houston & Walkinshaw, 2013; Tuccinardi, 
Poli, Romboli, Giordano & Martinelli, 2014).

The goal of this review is to discuss crucial aspects of molecular 
docking. Challenges and perspectives are also commented.

General recommendations and guidelines for 
docking
Hardware and software requirements for molecular 
docking
Before addressing the scientific details of the docking 
methodology, we will comment on the general hardware 
requirements to run docking efficiently. Usually, a docking 
calculation is not considered CPU intensive as ligands may be 

Figure 1. Schematic representation of two main approaches 
for molecular docking: A) rigid body and B) induced fit.
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Figure 2. Frequency of papers since 2000 with the keyword “docking” as part of the subject or title. The trends are shown for 
four major search engines.

docked and evaluated in a couple of minutes. Currently, almost 
any personal computer (or laptop for that matter) is competent 
enough to run a small docking campaign (around 500-1000 
compounds) in a reasonable time. However, docking-based 
virtual screening of public repositories may escalate quickly 
(more than 106 compounds), requiring more computing resources 
to finish in a couple of weeks. Table II presents general guidelines 
recommended for a computer before running docking.

In general, GPU computing has become more efficient and 
attractive for intensive calculations yielding results at a 5-10-
fold increase when compared to CPU-based calculations. Such 
approaches are well-known in computer-aided design (CAD).

The most notable example and success case for this are molecular 
dynamics, as many pioneering efforts were made to make these 
calculations scalable. Noteworthy examples include AMBER, 
GROMACS, Desmond, NAMD and CHARMM, all of which, 
have been ported to make use of Compute Unified Device 
Architecture (CUDA) developed by NVIDIA Corporation. With 
the use of GPUs, a workstation may process the same amount 
of information as a CPU-cluster, enabling the simulation of 
large systems or conducting longer simulations. Following the 

success of these approaches, other methods were optimized 
for CUDA: ab initio (GAMESS, Firefly), semi-empirical 
calculations (MOPAC), FEP calculations (Desmond), and 
similarity searching (FastROCS).

In this regard, what is the status of molecular docking? After 
all, molecular dynamics is a distant relative and is GPU 
optimized. Most molecular dynamics running on GPUs use 
a split method, which leaves the calculation of non-bonding 
interactions to the GPU while the CPU deals with constraints 
and electrostatics (Krieger & Vriend, 2015). Unfortunately, due 
to methodological differences molecular docking has not seen 
a true GPU implementation. Searching algorithms and scoring 
schemes involved in docking may be, in principle, implemented 
in GPUs. However, the programming and breakdown of such 
algorithms is not straightforward (Kannan & Ganji, 2010). 
Additionally, some docking software do not consider GPU 
optimization entirely such as Vina.

While it is true that an academic researcher rarely will need 
to dock more than 105 compounds, virtual screening would 
improve with faster technologies. A clearer application can 
be seen in reverse virtual screening or target fishing. This 
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method involves docking of a set of one or few ligands 
against a broad array of protein families, with the focus 
of identify a potential target or polypharmacology profile 
(Cereto-Massagué et al., 2015; Lavecchia & Cerchia, 2015; 
Medina-Franco, Giulianotti, Welmaker & Houghten, 2013; 
Méndez-Lucio, Naveja, Vite-Caritino, Prieto-Martínez & 
Medina-Franco, 2016). 

GPU-optimized docking may become a standard in the near 
future. Nonetheless, at present time such attempts are more 
exception than a rule. Examples include DOCK6 with GPU 
implementation, which allows for faster calculation of its 
AMBER scoring function (Yang et al., 2010); Molegro Virtual 
Docker which also used CUDA for GPU support and beta 
builds for Autodock 4 (Altuntaş, Bozkus & Fraguela, 2016; 
Mendonça et al., 2017). 

Is there such thing as the best molecular docking program?
Common questions in the field are: what is the best docking 
program? With plenty of choices and approaches (e.g., Table I), 
were to start? Academic or free software is a good starting point, 
due to ease of access. Unfortunately, most of these programs have 
a steep learning curve (e.g. DOCK, rDock and PLANTS). One 
of the reasons is the lack of penetration of Linux and UNIX-like 
operating systems in the computer literacy of average users. That 
is not to say that docking software is exclusive to UNIX-based 
OSs, just that some programs will depend on interpreters like 

Name Search algorithm Type References
AUTODOCK4 Lamarckian genetic 

algorithm
Academic Morris et al., 2009

DOCK Shape matching Academic Allen et al., 2015
OEDOCKING Shape matching Academic Kelley, Brown, Warren & Muchmore, 2015; 

Mcgann, 2011
FLEKSY Ensemble-based Commercial Nabuurs, Wagener & De Vlieg, 2007; Wagener, 

De Vlieg & Nabuurs, 2012
SWISSDOCK Evolutionary optimization Academic A. Grosdidier, Zoete & Michielin, 2011
GOLD Genetic algorithm Commercial Jones, Willett, Glen, Leach & Taylor, 1997
GLIDE Hybrid Commercial Friesner et al., 2004
VINA Local optimization Academic Trott & Olson, 2009
RDOCK Hybrid Academic Ruiz-Carmona et al., 2014
LEDOCK Simulated annealing Academic Unzue et al., 2016
PLANTS Ant colony optimization Academic Korb, Stützle & Exner, 2009
HADDOCK Hybrid Academic Dominguez, Boelens & Bonvin, 2003
SURFLEX-DOCK Shape matching Commercial Spitzer & Jain, 2012
MOE Hybrid Commercial Vilar, Cozza & Moro, 2008
FLEXX Shape matching Commercial Kramer, Rarey & Lengauer, 1999
FITTED Hybrid Commercial Corbeil & Moitessier, 2009; De Cesco, Kurian, 

Dufresne, Mittermaier & Moitessier, 2017; 
Englebienne & Moitessier, 2009; Moitessier et 
al., 2016

LIGANDFIT Shape matching Commercial Venkatachalam, Jiang, Oldfield & Waldman, 2003
ICM Hybrid Commercial Neves, Totrov & Abagyan, 2012
IGEMDOCK Evolutionary algorithm Academic Yang & Chen, 2004

Table I. Examples of software available for protein-ligand docking and their search algorithm.

Specification Minimum Recommended
Processor architecture i686 x86_64
Processor clock rate 1.5 GHz 3.4 GHz or higher
Number of threads 2 8
RAM 1 GB 4GB or higher
HDD 1 GB 10 GB or higher

Table II. Hardware recommendations to run molecular docking 
simulations.
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its protein preparation module as it yields wrong charges 
in some cases. 

•	 DOCK is one of the first docking programs developed. Its 
current version DOCK6, introduces new scoring functions 
and analysis methods. As mentioned before this is one of the 
few programs with GPU implementation for AMBER scoring 
and PBSA/GBSA calculation for protein-ligand complexes. 
As it is designed to work with DockPrep, the download 
and usage of USCF Chimera is required, nonetheless this 
allows the introduction of yet another very useful and 
efficient tool. The relative downsides of DOCK is that it is 
only implemented in Linux, it requires some experience in 
software compilation and relative underperformance of its 
default scoring function when compared to other programs. 

•	 rDock is robust Linux-based program with significant 
performance. Its steep learning curve may be one of its major 
weaknesses, as well as it may give troubles if the end-user 
has never compiled from source. Additionally, rDock does 
not have a preparation module.

•	 PLANTS has a well balance between usage and performance. 
It allows for water displacement calculations. The downside 
are its lack of GUI and steep learning curve. A good 
alternative is to use Vega ZZ (Pedretti, Villa & Vistoli, 
2004) in Windows as its GUI, for easier use. This GUI also 
provides support for rescoring poses from other docking 
programs using PLANTS.

theory of Molecular docking 
The docking process may be divided on three main parts: 
1) preparing the ligand and macromolecule. This is made based 
on force fields allowing for surface representation and cavities 
as potential ligand sites (Halperin, Ma, Wolfson & Nussinov, 
2002); 2) defining the docking type: rigid or flexible (Agarwal 
& Mehrotra, 2016); and 3) setting the search strategy for ligand 
conformations: systematic or stochastic (Ferreira, Dos Santos, 
Oliva & Andricopulo, 2015). Each part is further elaborated 
on next sections.

Ligand and protein preparation
The system must be carefully selected and prepared before 
doing any calculations. The first step is to obtain a structure of 
the protein, preferably with a bound ligand. Which structure 
should be used? It is highly recommended to consider three-
dimensional structures with high resolution or structures co-
crystallized with high affinity ligands or natural substrates. 
For some proteins, this may not be always the case. In such 
instances, structures with previous reports of docking or 
structural studies may be used.

As mentioned in the introduction, docking requires the 
assignment of several parameters. The information contained on 
a file of the Protein Data Bank (PDB) is often insufficient and 
therefore the rectification of PDB files is required. In practice, 
several preparation modules are available (see Table III), most 

Cygwin or Git to run properly. Nonetheless, the installation and 
use of such tools may prove troublesome, especially to novice 
users. In other cases, docking programs are not designed to 
run on Windows. Hence, several “beginner troubles” could be 
avoided using Linux from the start. 

Nonetheless, if the reader wants a Windows-friendly approach, 
Autodock and Vina (along with AutodockTools) are available 
for this platform. Furthermore, a very useful GUI may be found 
on PyRx (Dallakyan & Olson, 2015), with the added benefit 
of virtual screening capabilities out of the box. Another option 
for Windows is LeDock which also comes with a simple yet 
effective GUI (although virtual screening has been implemented 
for Linux).

Regarding commercial software, the authors have some 
experience with the programs: MOE, Glide and ICM. Of 
these, in our experience we consider MOE as one of the most 
userfriendly with a robust set of tools beyond docking.

Concerning the performance of each program, several studies 
have been conducted trying to identify “top-tier” programs. Of 
note, most docking programs while accurate, only achieve an 
overall success of 65-70%. Recently, a notable comparison of 
10 docking programs was made (Wang et al., 2016), comparing 
the pros and cons of the software evaluated against different 
benchmarks. This reference serves as a general guideline to 
choose a docking program for a particular use.

We have commented that there is a higher success rate if more 
than one program is used. However, as discussed below, the 
selection for consensus among different programs must be 
carefully made to avoid false positives. Moreover, it is important 
to remember that docking software was also validated against 
a training set. As such, some systems may be outside of its 
applicability domain. Based on these points, the authors make 
the following albeit subjective recommendations for different 
docking software:

•	 Vina is an excellent starting point and may be seen as a “jack 
of all trades” due to a good performance against several 
protein families. It has various derivatives and forks which 
provide additional features and ease of usage. 

•	 LeDock is a relative new program. Its simple use and quick 
calculations are its major strengths. Also, poses show a 
significant clustering and it comes with LePro that is a 
preparation module. Its weaknesses are the binding energy 
values and the inability to change the number of docking 
poses. 

•	 MOE has a nice GUI and it is very intuitive. For docking 
it has several search algorithms and scoring functions. 
Furthermore, MOE offers support for additional tools such 
as MOPAC, GAMESS, Gaussian, NAMD, FlexX, GOLD 
and OMEGA. Its weaknesses are unexpected results with 
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of them can correct common problems in PDB files. However, it 
has been shown that some structural aspects are often overlooked 
(Warren, Do, Kelley, Nicholls & Warren, 2012).

The selection of the parametrization method depends on the 
software; for example, Autodock and SwissDock use an in-
house force field, whereas MOE and LeDock use AMBER 
and CHARMM charges and atom types, respectively. Of 
note, the modules of protein preparation of different programs 
create slightly different output files having a direct impact on 
the docking results (Feher & Williams, 2012). Consequently, 
to compare results of docking (e.g., in virtual screening) it is 
strongly recommended to use the same preparation protocol 
for all the docking calculations. 

Usually, ligand and protein may be processed and prepared 
separately. Ligand preparation involves similar considerations, 
while the first step often involves its extraction from the protein 
structure. In virtual screening, ligands may come from sources 
different from PDB (e.g. Public repositories like PubChem, 
organic synthesis or virtual compounds). In such cases, the 

procedure may vary, but it involves the construction of such 
molecule from its Simplified Molecular Input Line Entry 
(SMILES) format or sketching the molecule and save it in a SDF/
MOL file, which serves as input. Alternately, following molecule 
construction several optimizations may follow: geometry and/
or charge assignment using ab initio or semiempirical methods, 
energy minimization or conformational/tautomer search.

It is worth mentioning that the protein may also be prepared on 
a similar manner (using semi-empirical calculations (Stewart, 
2008; Wada & Sakurai, 2005)). At first this may seem impractical 
due to considerable computing times. However, it has been 
shown that complex optimization and the use of detailed 
parameters significantly improve results and modelling of 
interactions (Hostaš, Řezáč & Hobza, 2013; Nikitina, Sulimov, 
Zayets & Zaitseva, 2004; Ohno, Kamiya, Asakawa, Inoue & 
Sakurai, 2001).

Finally, we encourage the visual inspection of the output of 
protein and ligand. This is because the preparation method can 
sometimes lead to errors in molecular description i.e., wrong 

Software Type Features
MOE Commercial Correction of residue issues, structure clean-up, charge assignment based 

of several forcefields, protein minimization and binding site prediction.
Maestro Academic/Commercial Correction of residue issues, structure clean-up, charge assignment, tautomer 

assignment, loop remodeling*, binding site prediction.* 
YASARA Academic/Commercial Correction of residues, binding site analysis, contact analysis, loop 

remodeling*, charge assignment*, protein minimization* and hydrogen 
bonds optimization.*

Lead Finder Commercial Structure optimization, charge assignment, rotamer selection
RosettaLigand Academic Structure optimization, charge assignment, rotamer selection, loop 

optimization.
BALLView Academic Protein minimization and charge assignment.
DeepView Academic Protein optimization, loop remodeling and binding site analysis.
Vega ZZ Academic Correction of residue issues, structure clean-up, charge assignment 

(forcefield/gasteiger), semiempirical charges and protein minimization.
SPORES Academic Structure preparation, geometry optimization, connectivity correction and 

tautomer assignment.
UCSF Chimera Academic Structure clean-up, charge assignment, loop remodeling, protein 

minimization.
Autodock Tools Academic Structure clean-up, charge assignment (Gasteiger), rotamer selection and 

binding site prediction.
Openbabel Open source Charge assignment, multiple file formats supported, file conversion.

† Presented as illustrative software, due to well-known capabilities or ease of use; for other applications of general use please refer to Prieto-
Martínez & Medina-Franco, 2018 *These features require commercial licensing.

Table III. Software used for protein and ligand preparation.†
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connectivity, missing bonds, abnormal geometries, etc. Such 
errors tend to happen more often when converting between 
molecular formats and therefore are easily propagated (Feher 
& Williams, 2012). One most “use with caution” steps are 
modules implemented in some software packages that enable 
the user to prepare the structure of the ligand with one or few 
clicks. These modules should not be used as black boxes. 
Madhavi et al. showed that careful selection and refinement of 
the structures for docking led to improve the results of virtual 
screening (Madhavi Sastry, Adzhigirey, Day, Annabhimoju & 
Sherman, 2013).

Following the ligand and protein preparation, the binding site 
must be selected and delimited. This step can be done manually 
by specifying the coordinates, or automatically using the 
coordinates of any bound ligand. Additionally, some programs 
allow for the calculation of cavities or probable binding sites. 
This is especially useful in cases when the binding site is not 
known. Also, some programs are capable of blind docking i.e., 
the search space involves the entirety of the macromolecule. 
Such approach has been used for the identification of putative 
binding sites (Marzaro et al., 2013) or allosteric sites (Espinoza-
Fonseca & Trujillo-Ferrara, 2005).

The mapping of the binding site (where the docking calculations 
will be centered) is often done by the GRID methodology 
(Goodford, 1985). Briefly, the grid can be considered as a box 
of given dimensions divided on smaller cubes in which a probe 
atom delineates a possible interaction contour. Therefore, the 
results are dependent of the GRID resolution and size. Recently, 
Feinstein & Brylinski (2015) studied the influence of box size 
on the identification of hits and virtual screening time, as this 
may be done on the fly or recalculated for each ligand. A good 
example to illustrate this point are Autodock and Vina: the 
former needs the precalculation of GRID for molecular docking 
while the latter does it on the fly yielding a faster calculation 
(Trott & Olson, 2009).

Defining the type of docking
Following protein and ligand preparation, the type of docking 
must be selected. In the case of flexible docking, residues are 
then selected as additional terms for energy calculation. This 
may be done manually (Autodock, Vina) or automatically 
(ICM, MOE). This usually means the potential is “softened” 
to allow residue flexibility and its interaction with the ligand 
(Dastmalchi, 2016). Briefly, softening the interaction potential 
involves any modification to the parameters of interaction 
description. Frequently this involves the Lennard-Jones 
potential (Equation 1), as it description for steric clashes may 
be too conservative and cannot sample subtle changes that can 
happen in a protein pocket. Therefore, if such term is reduced 
(e.g. 9-6 instead of 12-6) it can account for protein flexibility 
allowing more ligand conformations (Ferrari, Wei, Costantino 
& Shoichet, 2004).

E (ε) = ___ _ ___A B
r 

12 r 

6

Equation 1. Lennard-Jones potential,
as implemented in GRID-based simulations.

Setting the search strategy for ligand conformations
The ligand conformation and placement will depend on 
the selection of the docking algorithm. This involves a 
conformational search and the selection of the optimal solution 
per the scoring function. Such search may be systematic or at 
random. 

Systematic search involves a comprehensive sampling of 
conformations and combination of structural parameters. This 
approach, however, makes use of more resources and takes 
significantly more time to construct the conformers and evaluate 
them individually. Additionally, a true systematic search may 
generate a combinatorial explosion. To avoid this problem, 
systematic search is done by building the ligand from different 
fragments: selecting one as anchor and sequentially adding 
combinations of remaining fragments (Ferreira et al., 2015).

Stochastic search is made randomly by means of two main 
methods: Monte Carlo (MC) or genetic algorithms (GA). Each 
develops different conformations based on bond rotations 
as degrees of freedom (Meng, Zhang, Mezei & Cui, 2011). 
Structures are then submitted to the scoring function for pose 
selection and filtering.

scoring functions
The conformational search discussed above may yield a large 
number of structures. Of course, only a small percentage of 
these may be biologically relevant. Scoring functions are then 
used to distinguish good from bad solutions evaluating a broad 
range of properties including, but not limited to, intermolecular 
interactions, desolvation, electrostatic, and entropic effects 
(Ferreira et al., 2015). Scoring functions can be classified as 
force field-based, empirical, and knowledge-based.

Force field-based
This type of scoring function uses the parameter contribution to 
construct a “master function” (e.g., Equation 2), which account 
for bond stretching, electrostatics, non-bonding interactions, 
etc. In turn, this has the limitation that entropic contributions 
of solvation cannot be accounted for (Kitchen, Decornez, Furr 
& Bajorath, 2004). Moreover, these approaches usually involve 
longer computing times and need of distance cutoffs decreasing 
the accuracy of long-range effects (Meng et al., 2011).

Empirical
Empirical scorings functions involve the reproduction of 
experimental values. In this regard they may be related to 
QSAR models: linear regressions of descriptors (Eldridge, 
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Murray, Auton, Paolini & Mee, 1997) to model protein-
ligand interactions (Pason & Sotriffer, 2016). Therefore, the 
function is simpler. See for example the PLANTS score in 
Equation 3. Briefly, PLANTS scoring involves the evaluation 
of shape complementarity based on atom types as classified 
from training sets (f PLP), ligand clash potential (fclash), ligand 
torsion potential as implemented by Tripos forcefield (ftors), 
and site contributions to enforce ligand interactions (csite). The 
value -20 is introduced for score shifting (Korb et al., 2009). 
However, it has been argued that such energy parameters may 
not be robust enough (as their QSAR counterparts (Ferreira et 
al., 2015; Meng et al., 2011)). Furthermore, most empirical 
scorings suffer significant limitations, as they are derived from 
individual protein-ligand complexes and heterogeneous data in 
training sets (Pason & Sotriffer, 2016). Still, empirical scoring 
functions are computed much faster than their force field-based 
homologues and yield reasonable binding energy predictions 
(Murray, Auton & Eldridge, 1998).

Knowledge-based
These scoring functions are designed to reproduce structures 
and not energies. The structure is constructed using pairwise 
potentials derived from known receptor-ligand complexes 
(Ferreira et al., 2015; Kitchen et al., 2004). This is based on 
the inverse Boltzmann relation (vide infra), which comes from 
statistical mechanics and as such involves mean force potentials 
instead of real ones (Huang, Grinter & Zou, 2010). For example, 
consider the Equation 4. It shows the score calculated by Small 
Molecule Growth (SMoG) 2001. The first term involves the 
normalization of contact probability between protein and ligand, 
FrotX refer to the contribution of “frozen” flexible bonds, which 
reduce conformational entropy of ligands, and NrotX denotes 
the number of flexible bonds of types I and II (Ishchenko & 
Shakhnovich, 2002). 

A significant advantage of knowledge-based functions is their 
balance between performance and calculation time. Additionally, 

these can consider uncommon interactions e.g., sulphur-aromatic 
(Meng et al., 2011). On the other hand, a limitation of these 
scorings functions is their reliance on the inverse Boltzmann 
relationship. A reference state needs to be defined i.e., a state 
in which pairwise potentials are zero. Defining such state is 
not trivial and it can impact the results significantly (Muegge, 
2000). Attempts to improve the predictive power have resulted 
in “hybrid” approaches, e.g. SMoG2016 combines empirical 
data and knowledge-based potentials (Debroise, Shakhnovich 
& Chéron, 2017).

docking accuracy
The scope and capabilities of docking have been debated 
over the years. To date, several benchmark studies comparing 
different docking programs have been published (Cross et al., 
2009; Elokely & Doerksen, 2013; Perola, Walters & Charifson, 
2004; Tuccinardi et al., 2014; Wang et al., 2016). It has been 
shown that, on average, docking methods have around 60-
75% success rate on the identification of correct poses (Cole 
et al., 2017; Wang et al., 2016). A major challenge continues 
to be the accurate prediction of the energy interaction between 
two molecules. Thus far, quantitative correlations between 
experimental activities and docking scores are, in general, 
low, due to the high level of approximations implemented in 
scoring functions (see previous section). However, qualitative 
correlations are quite acceptable as proven by the success of 
several docking-based virtual screening campaigns.

It often happens that the pose with the top ranked score is 
not necessarily the best pose (Waszkowycz, Clark & Gancia, 
2011). Consider the following example: bromodomains are 
small proteins with conserved motifs, which are responsible of 
gene expression/suppression. A very potent inhibitor of BET 
bromodomains is IBET762, a triazolazepine ligand which has 
an IC50 in the nanomolar range. Using Vina for redocking using 
PDB ID 3P5O, the “best pose” is in a completely different 
orientation compared to the crystallographic reference (Figure 3).

Equation 2. Example of a hypothetical force field-based scoring function.

EPLANTS = fPLP+ fclash+ ftors+ csite – 20
Equation 3. Empirical scoring function as implemented by PLANTS.

Equation 4. Knowledge based scoring function as implemented by OpenGrowth.
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Another issue is the performance in cross-docking: docking of 
reference ligands to non-native structures of the same protein 
often results in the wrong prediction of the binding mode 
(Corbeil & Moitessier, 2009). Different strategies have been 
pursued to increase the docking accuracy. Two major approaches 
are ensemble and consensus docking that are discussed in the 
next two sub-sections.

Ensemble docking
One of the early applications of ensemble docking was published 
by Knegtel, Kuntz & Oshiro (1997). Ensemble docking is 
done by performing multiple docking simulations on different 
protein conformations. This approach partially accounts for 
protein flexibility. The main premise is that if a given ligand 
scores well on a native structure it should do so against a group 
of conformations allowing the better elucidation of conserved 
interactions. As such, ensemble docking can be considered 
as four-dimensional (4D) docking and success rates of 78% 
of correct binding geometry have been reported (Bottegoni, 
Kufareva, Totrov & Abagyan, 2009).

Ensembles of conformations of the target molecule may come 
from crystallographic data, NMR, or computational modeling 
e.g., molecular dynamics or different homology models. 
The effects that may influence the performance of ensemble 
docking are scoring functions (Elokely & Doerksen, 2013), the 
construction of the ensemble receptors (Craig, Essex & Spiegel, 
2010), ligand flexibility (Huang & Zou, 2007), molecular 
similarity, and enrichment (Ellingson, Miao, Baudry, & Smith, 
2015; Korb et al., 2012).

Ensemble docking also serves as a gateway technique for more 
complex simulations, for instance, solvation. Using three-
dimensional (3D) data is possible to make a more in depth 
approximation of induced fit, which may be integrated with 
other methodologies like QSAR (Lill, 2007). Co-solvation 
has proven significant during ensemble construction, as it 
has shown improved results in virtual screening. Still, it is 
not clear if such effect is due to the nature of the chemical 
probes used as co-solvent during model selection (Uehara & 
Tanaka, 2017).

Figure 3. Illustration of docking accuracy. Binding poses obtained from a docking run using Vina with a BET bromodomain 
(BRD4) and IBET762 (carbon atoms in yellow). A) Best result obtained from scoring (carbon atoms in grey). B) Correct pose for 
validation (carbon atoms in pink).
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Ensemble docking has proven successful in a broad range of 
applications such as identification of hot-spots for protein-protein 
interaction (Grosdidier & Fernández-Recio, 2008), GPCR 
modeling (Vilar & Costanzi, 2013), modeling of apo and holo 
structures (Motta & Bonati, 2017), hit identification (Kapoor 
et al., 2016), characterization of nuclear receptor modulators 
(Park, Kufareva & Abagyan, 2010), phase I metabolism (Harris 
et al., 2014), and toxicity (Evangelista et al., 2016).

Consensus docking
As commented in the introduction, it is recommended using 
more than one validated program for virtual screening. Given 
the different scopes of scoring functions and algorithms it is 
expected that they complement each other. However, since 
scoring functions are constructed with different bases their 
comparison and combination is not straightforward (Huang, 
Grinter & Zou, 2010). A first attempt was made by Charifson, 
Corkery, Murcko & Walters, 1999). In that study, authors showed a 
consistent improvement using three independent scoring functions 
(CHEMSCORE, PLP, and DOCK). Follow up publications 
suggested that combining three to four independent scoring 
functions are enough to improve results (Wang & Wang, 2001). 
An alternative approach was to develop new scoring functions 
that combined existing methods: premier examples are DrugScore 
and X-Score (Wang, Lu & Wang, 2003). While this strategy 
proved useful on certain cases it still has predictive power below 
average towards highly flexible ligands (Kitchen et al., 2004).

Further efforts in consensus docking focused on improving 
binding forces and pose selection (Plewczynski, Łażniewski, 
Grotthuss, Rychlewski & Ginalski, 2011). Certainly, consensus 
scoring improves pose selection but directly depends on the 
scores that are combined e.g., a strong correlation among them 
may increase error rate (Meng, Zhang, Mezei & Cui, 2011). In 
addition, scoring functions are sensible to specific features of 
the binding sites (Chaput & Mouawad, 2017).

Alternate approaches towards consensus docking are rank-based 
and intersection (Feher, 2006) that use statistical criteria to 
assess the contribution and significance of binding poses. These 
methods allow pose enrichment and better ranking results (Du, 
Bleylevens, Bitorina, Wichapong & Nicolaes, 2014; Kukol, 
2011) and have the advantage that do not require other input or 
calculation beyond statistics. Successful applications include hit 
identification towards HIV reverse-transcriptase (Samanta & Das, 
2017), tubulin inhibitors (Fani, Sattarinezhad & Bordbar, 2017), 
and Zika virus (Onawole, Sulaiman, Adegoke & Kolapo, 2017).

Knowledge-based consensus is a more rational and heuristic 
approach than rank-based. This strategy requires previous 
information as it is based on binding mode and significant 
interactions. Protein-ligand interaction fingerprints (PLIFs) 
are used to analyze docking results from different programs, 
searching meaningful interactions and visually inspecting poses 

to account for clustering or conserved conformations. Figure 
4 shows a consensus PLIF for a flavonoid ligand, using four 
different docking programs: ICM, LeDock, MOE and PLANTS. 
Again, the bromodoain BRD4 is taken as an example in this 
figure. For BRD4, three hotspots are known: WPF shelf (W81, 
P82 and F83), ZA channel (residues 85 through 96) and the 
AC binding module (Y96 and N140). The histogram presents 
the frequency of interactions with each amino acid residue as 
obtained with all four docking programs. The hypothesis is that 
the example ligand in Figure 4 having consensus interactions 
is more likely to bind to the WPF shelf and ZA channel. Upon 
close inspection, the example molecule is similar to flavopiridol, 
a kinase inhibitor which also binds to BRD4. Due to his binding, 
flavopiridol is known as a ZA inhibitor and therefore it can 
be stated that flavonoids conserve such arrangement (Prieto-
Martínez & Medina-Franco, 2017; Dhananjayan, 2015).

Although this method is not well-suited for virtual screening, 
it is useful for filtering and selecting hits (Medina-Franco, 
Méndez-Lucio & Martinez-Mayorga, 2014; Ran et al., 2015).

validation
As any technique, docking protocols need to be validated 
(Verdonk, Taylor, Chessari & Murray, 2007). This process 
begins before any simulation by protein modeling and selection. 
As mentioned above, docking input may come from different 
sources, however the most common is PDB (Berman et al., 
2000) that contains over 100,000 structures. Nonetheless, 
structures in PDB may have some issues such as redundancy, 
missing atoms, missing residues, and ambiguity. 

After preparing the tridimensional structure of the molecular 
target vide supra, a common practice for validation of the docking 
protocol is redocking the reference ligand. This is made to test 
if the docking algorithm produces a correct pose and if the 
scoring function can identify it as a top pose. As a standard or 
common measure of validation researchers use the root mean 
squared deviation (RMSD) (Equation 5) which compares the 
coordinates of the predicted vs. initial conformation of all heavy 
atoms of both conformations (Dias & de Azevedo Jr., 2008). 
Overall, RMSD values should be less than 2.0 Å. A major 
deviation indicates that the docking program is not suited for 
prediction of the docking pose. 

Equation 5. Root mean squared deviation for two sets of N 
atoms on c and d coordinates.

The implementation of the RMSD calculation is simple and 
gives direct comparison of reference and prediction. However, 
this metric is heuristic (Waszkowycz, Clark & Gancia, 2011) 
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and should not be considered as absolute. A more systematic 
approach is to repeat a redocking at least 50 times, construct 
a pairwise comparison of reference vs. pose and cluster poses 
based on a threshold (Morris & Lim-Wilby, 2008). This is done 
to verify docking convergence. In addition to RMSD, correct 
pose assessment should be based on interaction-recovery, 
meaning protein-ligand interactions should match for reference 
and prediction.

Another quantitative assessment of the performance of docking 
protocols, in particular for virtual screening, is the analysis 
of the Receiver-Operating Characteristic (ROC) curve. ROC 
analysis was developed initially for military applications but 
it has been adapted to evaluate the performance of screening 
and diagnostic tests (Zou, O’Malley & Mauri, 2007). ROC 
curves (Figure 5) plot sensitivity against 1-specificity. An ideal 
curve must pass over the top left corner, whereas a diagonal 

Figure 4. Knowledge-based consensus using protein ligand interaction fingerprints (PLIFs) and the results of three independent 
docking runs using different software. A) Results from LeDock. B) Results from ICM. C) Results from PLANTS. D) Results from MOE. 
E) Consensus interactions.
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over the axes represent random chance. Therefore, the ROC 
curve allows evaluation of discrimination power independent 
of event rates (Brown & Davis, 2006). In molecular docking, 
this validation requires an equal proportion of binders and 
non-binders. A threshold is then established for scoring, using 
binders for true positive rates (sensitivity) and non-binders for 
false positives (1-specificity) (Sørensen, Demir, Swift, Feher 
& Amaro, 2014). The area under curve (AUC) will represent 
the probability of ranking random active compounds higher 
than random inactive ones (Cross et al., 2009; Englebienne & 
Moitessier, 2009; Park, Kufareva & Abagyan, 2010).

current challenges
The following sections address crucial topics in molecular 
docking and some perspectives on the field.

Protein-ligand flexibility and binding evaluation
This is one of the main challenges in docking. Arguably, a 
proper approach to test the behavior of a protein-ligand complex 
is in a dynamic setting. Since the introduction Emil Fischer’s 
model for binding, with more efficient tools and methods it has 
become clear that subtlety is the protein way. After all, ligand 
promiscuity has been one of the major questions in medicinal 
chemistry and pharmacology. With the exponential growth of 
repositories like the Protein Data Bank (PDB; Berman et al., 
2000), new folding patterns and structural arrangements were 
discovered. This information allows the search for patterns 
and similarities in binding sites and protein pockets to shed 
some light into the inner workings of proteins (Ehrt, Brinkjost 
& Koch, 2016). The “pocket dynamics” has been classified in 
five classes, which could coexist in a single protein at the same 
time. This would allow bivalent binding which may serve for 
selectivity (Stank, Kokh, Fuller & Wade, 2016). 

To address the phenomena of induced fit in automated docking 
we have discussed the use of potential softening to sample side-
chain flexibility. In the next sections we pitch some alternatives 
to advance this problem.

Protein-ligand docking
Structure-based design can be considered an “old-school” yet 
very powerful approach to druggable targets. In computational 
methods this is where docking proves the most useful to input 
many ligand modifications and provide results on the fly. Induced 
fit docking, while useful, offers a narrow sampling space, as 
only neighboring residues are considered as flexible and some 
pocket dynamics or even allosteric effects cannot be considered. 

One method to sample flexibility is Protein Energy Landscape 
Exploration (PELE). This is a Monte Carlo approach which 
combines protein and ligand perturbations. Basically, three main 
steps are distinguished: 1) ligand and protein perturbation (using 
a rotamer library); 2) side-chain sampling (via algorithms) and 
3) minimization and acceptance using the Metropolis criteria. 
Of course, this can prove more expensive computationally but 
acts as a useful refinement, in particular if the binding site of a 
protein is not known. Recently, a study showed the successful 
application of PELE for the correct assessment of binding sites 
and poses for very flexible proteins (Grebner et al., 2016).

Another take on the problem is by means of machine learning. 
Using an ensemble of snapshots from molecular dynamics it is 
possible to apply techniques like self-organizing maps (SOMs) 
or k-means to determine the complementarity of protein and 
ligand conformations (Sheng et al., 2014; Vahl Quevedo, De 
Paris, Ruiz & Norberto De Souza, 2014). 

Ensemble docking has prevailed as a notable methodology to 
sample flexibility. Similar to PELE, Monte Carlo methods have 
been applied to generate reliable ensembles. One example is 
MTflex, which uses Monte Carlo Integration to calculate free 
energy. Building rotamers for binding residues based on low-
energy values along the free energy surface, the difference 
towards other techniques (i.e., rotamer libraries) is that the 
atoms are added based on a local energy criterion and not to 
match a structural query. Moreover, reference atom positions 
may be used to improve results. With this method more efficient 
ensembles were generated and diminished RMSD notably 
(Bansal, Zheng & Merz, 2016).

Metadynamics in other strategy to sample protein-ligand 
flexibility. Metadynamics belongs to the enhanced-sampling 
techniques in MD simulations. These methods were developed 
as a workaround the scalability of MD. Metadynamics use biased 
potentials applied to a selected number of variables in the system 
(also known as collective variables) to explore deeper into 
the configurational space of the system (Barducci, Bonomi & 
Parrinello, 2011). Hence, metadynamics explores conformations 

Figure 5. Representation of a ROC curve. Ideal model (marked 
by an arrow); hypothetical curve (green) and random chance, 
diagonal line (red).
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outside of local minima using restraints to construct a sum of 
Gaussian potentials. These potentials are repulsive in nature and 
have been used before in docking by algorithms such as taboo 
search. Nonetheless the difference is that metadynamics allows 
the reconstruction of the free energy surface of the whole system 
(Gervasio, Laio & Parrinello, 2005). Therefore, metadynamics 
may be used to validate a binding mode in a more rigorous 
manner. For example, an induced-fit/metadynamics protocol 
showed an improvement in Glide performance to identify true 
positives (Clark et al., 2016).

Docking peptides or peptide-like ligands
Due to their high flexibility and free rotation, peptide sampling is 
highly variable and virtually irreproducible. Currently, peptides 
are in medicinal resurgence with examples such as romidepsin 
(Klausmeyer, Shipley, Zuck & McCloud, 2011; VanderMolen, 
McCulloch, Pearce & Oberlies, 2011), tacrolimus (Dheer, Jyoti, 
Gupta & Shankar, 2018) and dolastatin (Senter & Sievers, 2012). 
Proving that although promiscuous, they can have interesting 
polypharmacological effects (Díaz-Eufracio, Palomino-
Hernández, Houghten & Medina-Franco, 2018) and are attractive 
as modulators of protein-protein interactions (Díaz-Eufracio, 
Naveja & Medina-Franco, 2018). Due to the high flexibility, 
peptide docking involves more exhaustive calculations. To 
circumvent this impediments several attempt have been made: 
1) the use of templates extracted from monomeric ensembles 
and filtering by energy restraints (Alogheli, Olanders, Schaal, 
Brandt & Karlén, 2017; Dominguez et al., 2003; Yan, Xu & Zou, 
2016), 2) applying restraints and optimizing orientation using 
local search (Sacquin-Mora & Prévost, 2015), 3) simulated-
annealing molecular dynamics and anchor-spot detection on 
the binding site (Ben-Shimon & Niv, 2015) and 4) systematic 
selection of rotatable bonds based on latin squares approach to 
identify energy minima (Paul & Gautham, 2017).
 
Protein-protein docking
One of the first attempts to model protein-protein docking was 
Critical Assessment of Protein Interactions (CAPRI; http://capri.
ebi.ac.uk) as a contest-space to challenge different human groups, 
software and servers into correctly predict the conformation of 
interacting protein-protein pre-chosen targets. The experimental 
structure of the complex is not know to contestants, but it is 
to the judges. From the various rounds of CAPRI interesting 
observations have followed. Indeed, the interaction phenomena 
between proteins is quite complex even for small changes 
(Bonvin, 2006). Conceptually, protein-protein docking can be 
approached as a prediction for the whole complex minimizing 
each protein by coarse grain models and using local search for 
the binding sites. However, the local minima of such event 
involves a multidimensional calculation, whereas the algorithms 
treat the problem as a global optimization that may not be 
physically accurate (Vakser, 2014). Thus, the major challenge 
for protein-protein docking is the flexibility of the backbone. To 
this end, Monte Carlo techniques have been applied successfully 

by Rossetta (Wang, Bradley & Baker, 2007). Nevertheless, the 
bound state of proteins still poses an unsolved problem due 
to wrong sampling (Kuroda & Gray, 2016). For this reason, 
comprehensive computational studies need to be conducted to 
successfully distinguish realistic complexes from unrealistic 
predictions (Vreven et al., 2015).

Pose vs scoring
Hit selection is an ongoing challenge in docking. As discussed 
above, scoring functions are limited as they are derived from a 
test set. Therefore, the score of a given ligand does not tell much 
unless compared to a reference. In particular cases, the results 
may be ambiguous, i.e., symmetric ligands (Huang, Grinter & 
Zou, 2010) and enantiomer pairs (Ramírez & Caballero, 2016). 
Therefore, the problem is how to obtain quality poses from a 
scoring function. A first step would be the correct preparation of 
structures. Notable improvements on docking have been made 
when molecular dynamics are used to prepare the structures of 
molecular targets, for instance, to conduct energy minimization 
and assign charges (Alonso, Bliznyuk & Gready, 2006; Uehara 
& Tanaka, 2017). For ligand preparation, methods that have 
improved docking results include: optimization using semi-
empiric charges (Adeniyi & Soliman, 2017; Marzaro et al., 
2013; Oferkin et al., 2015; Xu & Lill, 2013), COSMO solvation 
(Oferkin et al., 2015), molecular mechanics Poison-Boltzmann/
surface area (Halperin, Wolfson & Nussinov, 2002), and force 
field optimization (Zoete, Cuendet, Grosdidier & Michielin, 
2011). Moreover, it has been shown that forcefield optimization 
with implicit solvent is comparable to advanced semi-empirical 
methods (e.g. CHARMM-GBSW vs PM7) and allows for a better 
energy prediction of complexes (Sulimov, Kutov, Katkova, Ilin 
& Sulimov, 2017). It also has been suggested that binding may 
be better predicted by improvement on model representation. 
To this end, efforts have been conducted to make additional 
models for binding. Yet, this may not be necessarily the case 
as very specific descriptors and models do not show significant 
improvement on the prediction of binding affinity (Ballester, 
Schreyer & Blundell, 2014). 

In addition to modify the scoring functions, some programs 
allow adjusting the scoring parameters and weight assignment 
e.g., Vina. Additional refinement includes the consideration 
of rotational terms and solvation (Kitchen, Decornez, Furr & 
Bajorath, 2004). However, these processes need to be tested 
against robust sets like DUD-E or CSAR (Da & Kireev, 2014; 
Huang, Shoichet, & Irwin, 2006; Huang, Grinter & Zou, 2010). 

Current research has turned to machine learning to improve 
docking and scoring (Waszkowycz, Clark & Gancia, 2011). 
Machine learning studies the development of adaptive programs 
capable of self-improvement without user input (Grosan & 
Abraham, 2011). These techniques may be classified as feature-
based which construct vectors, based on a set of instances, and 
similarity-based which handle explicit input as matrices (Ezzat, 
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Wu, Li & Kwoh, 2017). Common techniques are multiple linear 
regression, support vector machines, random forests, and neural 
networks (Ashtawy & Mahapatra, 2014). A significant feature 
of these methods is their applicability to large sets (Wang & 
Wang, 2001). 

Approaches that have implemented optimization of scores 
include PostDOCK which accounts for 3D features that are 
not reflected on scoring (Knegtel, Kuntz & Oshiro, 1997), 
Supervised Consensus Scoring using random forest (Bjerrum, 
2016), Gradient boosting consensus using decision trees 
(Ericksen et al., 2017), and several attempts to study the non-
linear dependency of ligand orientation (Khamis, Gomaa & 
Ahmed, 2015). A recent study has used machine learning to 
identify significant parameters to construct functions with 
improved prediction of affinity (Bjerrum, 2016).

For pose prediction on the other hand, metaheuristics have been 
essential for docking algorithms. These techniques are related 
to artificial intelligence as they are focused on optimization 
algorithms (Bozorg-Haddad, 2018; López-Camacho, García 
Godoy, García-Nieto, Nebro & Aldana-Montes, 2015). 
Examples are simulated annealing, genetic and evolutionary 
algorithms, ant colony optimization, swarm intelligence, tabu 
search, and local search. Metaheuristics have been useful for 
problem solving as they are not prone to combinatorial explosion. 
Nonetheless it is important to remember that although their 
algorithms search for optimal solutions, their performance 
requires problem-specific adaptation (Glover & Sörensen, 
2015). Most docking programs have used these methods for 
pose generation and selection.

Conformational searches on the other hand, are competent enough 
to sample drug-like molecules. Their apparent underperformance 
can be attributed to the lack of implicit solvation and, in some 
cases, to the protonation state as it further deviates the RMSD 
when compared to crystal structures (Ballester, Schreyer & 
Blundell, 2014; Gürsoy & Smieško, 2017).

Lastly, docking poses may be ranked based on 3D-similarity 
against a crystallographic reference. Using this approach 
better enrichments were found, around 10% better (AUC of 
0.7 for docking vs 0.8 for 3D similarity) than scoring rankings 
(Anighoro & Bajorath, 2016).

Water solvation and docking
Removal of explicit solvent (specifically water molecules) has 
been a constant criticism in docking (Fischer, Merlitz & Wenzel, 
2008). This consideration is often based on the approaches of 
the scoring function and computational time to limit the degrees 
of freedom of a given system. Notwithstanding, this approach 
is out of the question for proteins with highly conserved 
structural water molecules e.g., HIV-1 protease (Corbeil & 
Moitessier, 2009) and BET-bromodomains (Crawford et al., 

2016; Galdeano & Ciulli, 2016; Zhao, Gartenmann, Dong, 
Spiliotopoulos & Caflisch, 2014). Nevertheless, the problem 
is not just limited to the inclusion of water molecules during 
calculations, but to correctly evaluate water contribution to 
binding and its implications (Fischer, Merlitz & Wenzel, 
2008; Parikh & Kellogg, 2014). First efforts to include water 
molecules during docking calculations suggested that no 
significant improvement on scoring was obtained (Roberts & 
Mancera, 2008). However, some ligands are especially designed 
to displace water. In such cases, docking simulations are more 
accurate with the correct treatment of water molecules (Corbeil 
& Moitessier, 2009).

Currently most docking programs can assess the presence of 
water molecules during calculations. However, some challenges 
persist such as scoring reparametrization, pose comparison 
involving different interacting waters, and correct discrimination 
of displaceable/non-displaceable waters (Waszkowycz, Clark & 
Gancia, 2011). Hence, the first step is the identification of key 
water molecules and their contribution (Kumar & Zhang, 2013).
Methods that have advanced the correct representation of water 
molecules in proteins include: free energy perturbation methods 
(Jorgensen & Thomas, 2008), Monte Carlo probability (Parikh 
& Kellogg, 2014), molecular dynamics of water on the binding 
site (as implemented by Schrödinger (Kumar & Zhang, 2013; 
Waszkowycz, Clark & Gancia, 2011)), water displacement 
as implemented by PLANTS (Korb, Stützle & Exner, 2009), 
“Attachment” of water molecules to ligands as additional torsions 
(Lie, Thomsen, Pedersen, Schiøtt & Christensen, 2011), QM/
MM hybrid methods (Xu & Lill, 2013), COSMO solvation, 
and semi-empirical charges for ligands (Oferkin et al., 2015). 
Additional methods are “hydrated docking” scripts for Autodock 
(Forli et al., 2016), protein-centric and ligand centric hydration 
as implemented by Rossetta (Lemmon & Meiler, 2013), Water 
docking using Vina (Ross, Morris & Biggin, 2012; Sridhar et al., 
2017), WScore (Murphy et al., 2016), and grid inhomogeneous 
solvation theory applied by Autodock (Uehara & Tanaka, 2016).

Covalent docking
Covalent inhibitors or modifiers are usually deprioritized as 
potential drugs candidates due to toxicity concerns. Notable 
examples are modulators of acetyl-cholinesterase (King & 
Aaron, 2015). In contrast, instances where covalent ligands 
are useful have gained notoriety such as Romidepsin, a 
histone deacetylase inhibitor and prodrug (VanderMolen, 
McCulloch, Pearce & Oberlies, 2011). Actually, covalent 
modifiers may be more selective and effective, and more 
specific for infectious diseases (Schröder et al., 2013). The 
overall interest towards rational design and development of 
covalent inhibitors is growing. Current programs for covalent 
docking include Autodock, CovDock/Glide, DOCK, FITTED, 
FlexX, GOLD, ICM, and MOE. However, covalent interactions 
and reactions are not considered explicitly on most programs 
(Brás, Cerqueira, Sousa, Fernandes & Ramos, 2014). To 
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define the possibility of a covalent interaction, a “link atom” 
must be defined and manually selected while the docking 
algorithm forces both parts to occupy the same volume to 
simulate a covalent bond (Awoonor-Williams, Walsh & Rowley, 
2017). The main drawback of current models for covalent 
interactions is that they just mimic a bond formation between 
known instances but the process of formation of a covalent 
bond must be assessed correctly by quantum mechanics (De 
Cesco et al., 2017). Nonetheless, it is generally accepted that 
covalent processes are preceded by non-covalent stabilization 
and orientation of “warhead” groups for reaction (Ai, Yu, Tan, 
Chai & Liu, 2016).

In addition to mainstream programs, approaches for covalent 
docking, include CovalentDock a grid based algorithm that 
uses Autodock scoring and includes bond formation as a new 
energy contribution, although it is currently limited to certain 
reactions (Kumalo, Bhakat & Soliman, 2015) and DOCKTITE 
a collection of SVL scripts for MOE implementation. This 
approach uses a “warhead screening approach” and chimeric 
pose generation which can be optimized by force fields (Scholz, 
Knorr, Hamacher & Schmidt, 2015). Other approach is Steric 
Clashes Alleviating Receptor (SCAR). This strategy is based 
on protein mutagenesis to remove reactive residues and favor 
non-covalent interaction (Ai, Yu, Tan,Chai & Liu, 2016).

Despite the fact that covalent docking remains an unsolved 
problem, notable progress has been made with current 
approximations: covalent virtual screening (Toledo Warshaviak, 
Golan, Borrelli, Zhu & Kalid, 2014)Cathepsin K, EGFR, and 
XPO1, identification of TAK1 inhibitors (Fakhouri et al., 2015), 
ubiquitin-proteasome pathway inhibitors (Li et al., 2014), and 
identification of enzymatic substrates (London et al., 2015).

Metal-binding docking
It is well known the high importance of metal cofactors on 
many protein families. Similar to covalent docking, modeling 
ligand-metal interactions still requires major developments. 
In particular modeling interactions with zinc, calcium, and 
magnesium (which are prominent metal ions in drug discovery).

Correct parametrization of zinc is taking a major attention as 
it is present on druggable targets and its geometry is mostly 
tetrahedral (Irwin, Raushel & Shoichet, 2005; Mccall, Huang 
& Fierke, 2000). Because ligand-zinc interaction may be 
quasi-covalent its modeling requires different considerations 
i.e., its acidic behavior allows for “special” hydrogen bonding 
(Moitessier et al., 2016). This lead to force field reparametrization 
as implemented by Autodock (Santos-Martins, Forli, Ramos 
& Olson, 2014), which when compared with other programs 
yielded a more accurate solution to pose and scoring (Bai et al., 
2015; Chen et al., 2007). Programs featuring metal recognition 
include Autodock, DOCK, FITTED, FlexX, Glide, LigandFit, 
MOE, and MpSDock.

conclusions
Molecular docking is a useful technique in structure-based drug 
design, virtual screening, and optimization of lead compounds. 
To date, there are several standalone and online docking tools 
to assist the computational and medicinal chemist to help 
explain the activity of compounds at the molecular level or to 
filter compounds for further studies. The increasing number 
of publications associated with molecular docking reflects the 
interest of the scientific community to continue developing or 
refining docking tools, and/or using such tools in drug discovery 
projects.

Current docking programs are able to predict, in general, correct 
binding modes. However, a major limitation of most docking 
protocols is the calculation of accurate binding energies. Such 
limitations are largely associated with the large number of 
approximations considering during a docking run such as the 
treatment of solvent and the flexibility of the macromolecular 
system e.g., protein-ligand complex. Other major challenges 
are covalent docking and the accurate and fast modeling of 
metallic interactions during the docking process.

For practical applications, docking should integrated with 
other experimental or computational techniques, depending 
on the primary goals of the study. For instance, biophysical 
or biochemical experiments have to be done to confirm the 
putative binding or biological activity predicted with docking. 
Indeed, virtual screening campaigns are multidisciplinary 
cycles which involve complementary techniques to further 
improve hit identification and optimization. Molecular 
dynamics, free energy perturbation methods and quantum 
mechanics/molecular mechanics (QM/MM) calculations are 
instances of methods that can be conducted to improve the 
calculation of binding energies. These methods are usually 
applied for selected binding poses generated with docking. In 
any application, the use of a docking program needs careful 
selection and validation to correctly assess its prediction power 
towards a specific problem. Additionally, any preliminary 
results should be contrasted to at least two more programs or 
structures using a consensus approach. While some aspects 
of simulation and calculation still need improvement, current 
docking methods may provide valuable guidance to drug 
design and optimization.

acknowledgeMents
FD P-M acknowledges the PhD scholarship from CONACYT 
no. 660465/576637. This work was supported by the 
Programa de Apoyo a Proyectos de Investigación e Innovación 
Tecnológica (PAPIIT) grant IA203718, and Programa de 
Apoyo a Proyectos para la Innovación y Mejoramiento de la 
Enseñanza (PAPIME) grant PE200118, UNAM.

https://doi.org/10.22201/fesz.23958723e.2018.0.143


TIP Rev.Esp.Cienc.Quím.Biol.80                                                                                                       Vol. 21, Supl. 1
DOI: 10.22201/fesz.23958723e.2018.0.143

references

Adeniyi, A. A., & Soliman, M. E. S. (2017). Implementing QM in 
docking calculations: is it a waste of computational time? Drug 
Discovery Today, 22(8), 1216–1223. https://doi.org/10.1016/j.
drudis.2017.06.012

Agarwal, S., & Mehrotra, R. (2016). An overview of Molecular 
Docking. JSM Chemistry., 4(2), 1024.

Ai, Y., Yu, L., Tan, X., Chai, X., & Liu, S. (2016). Discovery of 
Covalent Ligands via Noncovalent Docking by Dissecting 
Covalent Docking Based on a Steric-Clashes Alleviating 
Receptor (SCAR) Strategy. Journal of Chemical Information 
and Modeling, 56(8), 1563–1575. https://doi.org/10.1021/acs.
jcim.6b00334

Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, 
D. T., Lang, P. T., Case, D. A., Kuntz, I. D., Rizzo, R. C. 
(2015). DOCK 6: Impact of new features and current docking 
performance. Journal of Computational Chemistry, 36(15), 
1132–1156. https://doi.org/10.1002/jcc.23905

Alogheli, H., Olanders, G., Schaal, W., Brandt, P., & Karlén, A. 
(2017). Docking of Macrocycles: Comparing Rigid and 
Flexible Docking in Glide. Journal of Chemical Information 
and Modeling, 57(2), 190–202. https://doi.org/10.1021/acs.
jcim.6b00443

Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining 
docking and molecular dynamic simulations in drug design. 
Medicinal Research Reviews, 26(5), 531–568. https://doi.
org/10.1002/med.20067

Altuntaş, S., Bozkus, Z., & Fraguela, B. B. (2016). GPU accelerated 
molecular docking simulation with genetic algorithms. In 
Lecture Notes in Computer Science (including subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics) (Vol. 9598, pp. 134–146). Springer, Cham. 
https://doi.org/10.1007/978-3-319-31153-1_10

Anighoro, A., & Bajorath, J. (2016). Three-Dimensional Similarity in 
Molecular Docking: Prioritizing Ligand Poses on the Basis of 
Experimental Binding Modes. Journal of Chemical Information 
and Modeling, 56(3), 580–587. https://doi.org/10.1021/acs.
jcim.5b00745

Ashtawy, H. M., & Mahapatra, N. R. (2014). Molecular Docking for 
Drug Discovery: Machine-Learning Approaches for Native 
Pose Prediction of Protein-Ligand Complexes. In Lecture 
Notes in Computer Science (including subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in Bioinformatics) 
(Vol. 8452 LNBI, pp. 15–32). Springer International Publishing. 
https://doi.org/10.1007/978-3-319-09042-9_2

Awoonor-Williams, E., Walsh, A. G., & Rowley, C. N. (2017). Modeling 
covalent-modifier drugs. Biochimica et Biophysica Acta (BBA) 
- Proteins and Proteomics, 1865(11), 1664–1675. https://doi.
org/10.1016/j.bbapap.2017.05.009

Bai, F., Liao, S., Gu, J., Jiang, H., Wang, X., & Li, H. (2015). An 
accurate metalloprotein-specific scoring function and molecular 
docking program devised by a dynamic sampling and iteration 
optimization strategy. Journal of Chemical Information and 

Modeling, 55(4), 833–847. https://doi.org/10.1021/ci500647f
Ballester, P. J., Schreyer, A., & Blundell, T. L. (2014). Does a more 

precise chemical description of protein-ligand complexes lead 
to more accurate prediction of binding affinity? Journal of 
Chemical Information and Modeling, 54(3), 944–955. https://
doi.org/10.1021/ci500091r

Bansal, N., Zheng, Z., & Merz, K. M. (2016). Incorporation of side 
chain flexibility into protein binding pockets using MTflex. 
Bioorganic and Medicinal Chemistry, 24(20), 4978–4987. 
https://doi.org/10.1016/j.bmc.2016.08.030

Barducci, A., Bonomi, M., & Parrinello, M. (2011). Metadynamics. 
Wiley Interdisciplinary Reviews: Computational Molecular 
Science, 1(5), 826–843. https://doi.org/10.1002/wcms.31

Ben-Shimon, A., & Niv, M. Y. (2015). AnchorDock: Blind and flexible 
anchor-driven peptide docking. Structure, 23(5), 929–940. 
https://doi.org/10.1016/j.str.2015.03.010

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., 
Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000). The 
protein data bank. Nucleic Acids Research, 28(1), 235–242. 
https://doi.org/10.1093/nar/28.1.235

Bjerrum, E. J. (2016). Machine learning optimization of cross docking 
accuracy. Computational Biology and Chemistry, 62, 133–144. 
https://doi.org/10.1016/j.compbiolchem.2016.04.005

Bonvin, A. M. (2006). Flexible protein-protein docking. Current 
Opinion in Structural Biology, 16(2), 194–200. https://doi.
org/10.1016/j.sbi.2006.02.002

Bottegoni, G., Kufareva, I., Totrov, M., & Abagyan, R. (2009). Four-
dimensional docking: A fast and accurate account of discrete 
receptor flexibility in ligand docking. Journal of Medicinal 
Chemistry, 52(2), 397–406. https://doi.org/10.1021/jm8009958

Bozorg-Haddad, O. (Ed.). (2018). Advanced Optimization by Nature-
Inspired Algorithms (Vol. 720). Singapore: Springer Singapore. 
https://doi.org/10.1007/978-981-10-5221-7

Brás, N. F., Cerqueira, N. M. F. S. A., Sousa, S. F., Fernandes, P. 
A., & Ramos, M. J. (2014). Protein ligand docking in drug 
discovery. Protein Modelling. https://doi.org/10.1007/978-3-
319-09976-7_11

Brown, C. D., & Davis, H. T. (2006). Receiver operating characteristics 
curves and related decision measures: A tutorial. Chemometrics 
and Intelligent Laboratory Systems, 80(1), 24–38. https://doi.
org/10.1016/j.chemolab.2005.05.004

Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Pujadas, 
G., & Garcia-Vallve, S. (2015). Tools for in silico target 
fishing. Methods, 71, 98–103. https://doi.org/10.1016/j.
ymeth.2014.09.006

Chaput, L., & Mouawad, L. (2017). Efficient conformational sampling 
and weak scoring in docking programs? Strategy of the 
wisdom of crowds. Journal of Cheminformatics, 9. https://
doi.org/10.1186/s13321-017-0227-x

Charifson, P. S., Corkery, J. J., Murcko, M. A., & Walters, W. P. (1999). 
Consensus scoring: A method for obtaining improved hit rates 
from docking databases of three-dimensional structures into 
proteins. Journal of Medicinal Chemistry, 42(25), 5100–5109. 
https://doi.org/10.1021/jm990352k

https://doi.org/10.22201/fesz.23958723e.2018.0.143


Prieto-Martínez, F.D. et al.: Molecular  docking 812018
DOI: 10.22201/fesz.23958723e.2018.0.143

Chen, D., Menche, G., Power, T. D., Sower, L., Peterson, J. W., & 
Schein, C. H. (2007). Accounting for ligand-bound metal 
ions in docking small molecules on adenylyl cyclase toxins. 
Proteins: Structure, Function, and Bioinformatics, 67(3), 
593–605. https://doi.org/10.1002/prot.21249

Clark, A. J., Tiwary, P., Borrelli, K., Feng, S., Miller, E. B., Abel, R., 
Friesner R. A., Berne, B. J. (2016). Prediction of Protein–Ligand 
Binding Poses via a Combination of Induced Fit Docking and 
Metadynamics Simulations. Journal of Chemical Theory and 
Computation, 12(6), 2990–2998. https://doi.org/10.1021/acs.
jctc.6b00201

Cole, J., Davis, E., Jones, G., & Sage, C. R. (2017). Molecular 
Docking—A Solved Problem? In Comprehensive Medicinal 
Chemistry III (pp. 297–318). Elsevier. https://doi.org/10.1016/
B978-0-12-409547-2.12352-2

Corbeil, C. R., & Moitessier, N. (2009). Docking ligands into flexible 
and solvated macromolecules. 3. Impact of input ligand 
conformation, protein flexibility, and water molecules on 
the accuracy of docking programs. Journal of Chemical 
Information and Modeling, 49(4), 997–1009. https://doi.
org/10.1021/ci8004176

Craig, I. R., Essex, J. W., & Spiegel, K. (2010). Ensemble docking 
into multiple crystallographically derived protein structures: 
An evaluation based on the statistical analysis of enrichments. 
Journal of Chemical Information and Modeling, 50(4), 
511–524. https://doi.org/10.1021/ci900407c

Crawford, T. D., Tsui, V., Flynn, E. M., Wang, S., Taylor, A. M., Côté, 
A., Audia, J. E., Beresini, M. H., Burdick D. J., Cummings, 
R., Dakin, L. A., Duplessis, M., Good, A. C., Hewitt M. C., 
Huang, H., Jayaram, H., Kiefer, J. R., Jiang, Y., Murray, J., 
Nasveschuk, C. G., Pardo, E., Poy, F., Romero, F. A., Tang, 
Y., Wang, J., Xu, Z., Zawadzke, L. E., Zhu, X., Albrecht, 
B. K., Magnuson, S. R., Bellon, S., Cochran, A. G. (2016). 
Diving into the Water: Inducible Binding Conformations 
for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains. 
Journal of Medicinal Chemistry, 59(11), 5391–5402. https://
doi.org/10.1021/acs.jmedchem.6b00264

Cross, J. B., Thompson, D. C., Rai, B. K., Baber, J. C., Fan, K. 
Y., Hu, Y., & Humblet, C. (2009). Comparison of Several 
Molecular Docking Programs: Pose Prediction and Virtual 
Screening Accuracy. Journal of Chemical Information 
and Modeling, 49(6), 1455–1474. https://doi.org/10.1021/
ci900056c

Da, C., & Kireev, D. (2014). Structural Protein–Ligand Interaction 
Fingerprints (SPLIF) for Structure-Based Virtual Screening: 
Method and Benchmark Study. Journal of Chemical 
Information and Modeling, 54(9), 2555–2561. https://doi.
org/10.1021/ci500319f

Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library 
Screening by Docking with PyRx. In Methods in molecular 
biology (Clifton, N.J.) (Vol. 1263, pp. 243–250). https://doi.
org/10.1007/978-1-4939-2269-7_19

Dastmalchi, S. (2016). Methods and Algorithms for Molecular 
Docking-Based Drug Design and Discovery. (S. Dastmalchi, 

M. Hamzeh-Mivehroud, & B. Sokouti, Eds.). IGI Global. 
https://doi.org/10.4018/978-1-5225-0115-2

De Cesco, S., Kurian, J., Dufresne, C., Mittermaier, A., & Moitessier, 
N. (2017). Covalent inhibitors design and discovery. European 
Journal of Medicinal Chemistry, 138, 96–114. https://doi.
org/10.1016/j.ejmech.2017.06.019

Debroise, T., Shakhnovich, E. I., & Chéron, N. (2017). A Hybrid 
Knowledge-Based and Empirical Scoring Function for 
Protein-Ligand Interaction: SMoG2016. Journal of Chemical 
Information and Modeling, 57(3), 584–593. https://doi.
org/10.1021/acs.jcim.6b00610

Dhananjayan, K. (2015). Molecular Docking Study Characterization 
of Rare Flavonoids at the Nac-Binding Site of the First 
Bromodomain of BRD4 (BRD4 BD1). Journal of Cancer 
Research, 2015, 1–15. https://doi.org/10.1155/2015/762716

Dheer, D., Jyoti, Gupta, P. N., & Shankar, R. (2018). Tacrolimus: 
An updated review on delivering strategies for multifarious 
diseases. European Journal of Pharmaceutical Sciences, 114, 
217–227. https://doi.org/10.1016/j.ejps.2017.12.017

Dias, R., & de Azevedo Jr., W. (2008). Molecular Docking Algorithms. 
Current Drug Targets, 9(12), 1040–1047. https://doi.
org/10.2174/138945008786949432

Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: 
A protein-protein docking approach based on biochemical or 
biophysical information. Journal of the American Chemical 
Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x

Du, J., Bleylevens, I. W. M., Bitorina, A. V., Wichapong, K., & 
Nicolaes, G. A. F. (2014). Optimization of compound ranking 
for structure-based virtual ligand screening using an established 
FRED-surflex consensus approach. Chemical Biology and 
Drug Design, 83(1), 37–51. https://doi.org/10.1111/cbdd.12202

Ehrt, C., Brinkjost, T., & Koch, O. (2016). Impact of Binding Site 
Comparisons on Medicinal Chemistry and Rational Molecular 
Design. Journal of Medicinal Chemistry, 59(9), 4121–4151. 
https://doi.org/10.1021/acs.jmedchem.6b00078

Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V, & Mee, 
R. P. (1997). Empirical scoring functions: I. The development 
of a fast empirical scoring function to estimate the binding 
affinity of ligands in receptor complexes. Journal of Computer-
Aided Molecular Design, 11(5), 425–445. https://doi.org/Doi 
10.1023/A:1007996124545

Ellingson, S. R., Miao, Y., Baudry, J., & Smith, J. C. (2015). Multi-
conformer ensemble docking to difficult protein targets. 
Journal of Physical Chemistry B, 119(3), 1026–1034. https://
doi.org/10.1021/jp506511p

Elokely, K. M., & Doerksen, R. J. (2013). Docking challenge: Protein 
sampling and molecular docking performance. Journal of 
Chemical Information and Modeling, 53(8), 1934–1945. 
https://doi.org/10.1021/ci400040d

Englebienne, P., & Moitessier, N. (2009). Docking ligands into flexible 
and solvated macromolecules. 5. Force-field-based prediction 
of binding affinities of ligands to proteins. Journal of Chemical 
Information and Modeling, 49(11), 2564–2571. https://doi.
org/10.1021/ci900251k

https://doi.org/10.22201/fesz.23958723e.2018.0.143


TIP Rev.Esp.Cienc.Quím.Biol.82                                                                                                       Vol. 21, Supl. 1
DOI: 10.22201/fesz.23958723e.2018.0.143

Ericksen, S. S., Wu, H., Zhang, H., Michael, L. A., Newton, M. A., 
Hoffmann, F. M., & Wildman, S. A. (2017). Machine Learning 
Consensus Scoring Improves Performance Across Targets 
in Structure-Based Virtual Screening. Journal of Chemical 
Information and Modeling. https://doi.org/10.1021/acs.
jcim.7b00153

Espinoza-Fonseca, L. M., & Trujillo-Ferrara, J. G. (2005). Identification 
of multiple allosteric sites on the M 1 muscarinic acetylcholine 
receptor. FEBS Letters, 579(30), 6726–6732. https://doi.
org/10.1016/j.febslet.2005.10.069 ¿ M subíndice 1 (M1) es 
así o sobra el (1)? Es subíndice

Evangelista, W., Weir, R. L., Ellingson, S. R., Harris, J. B., Kapoor, K., 
Smith, J. C., & Baudry, J. (2016). Ensemble-based docking: 
From hit discovery to metabolism and toxicity predictions. 
Bioorganic and Medicinal Chemistry, 24(20), 4928–4935. 
https://doi.org/10.1016/j.bmc.2016.07.064

Ezzat, A., Wu, M., Li, X.-L., & Kwoh, C.-K. (2017). Drug-
target interaction prediction using ensemble learning and 
dimensionality reduction. Methods. 129, 81-88. https://doi.
org/10.1016/j.ymeth.2017.05.016

Fakhouri, L., El-Elimat, T., Hurst, D. P., Reggio, P. H., Pearce, C. J., 
Oberlies, N. H., & Croatt, M. P. (2015). Isolation, semisynthesis, 
covalent docking and transforming growth factor beta-activated 
kinase 1 (TAK1)-inhibitory activities of (5Z)-7-oxozeaenol 
analogues. Bioorganic and Medicinal Chemistry, 23(21), 
6993–6999. https://doi.org/10.1016/j.bmc.2015.09.037

Fani, N., Sattarinezhad, E., & Bordbar, A. K. (2017). Identification of 
new 2,5-diketopiperazine derivatives as simultaneous effective 
inhibitors of αβ-tubulin and BCRP proteins: Molecular docking, 
Structure-Activity Relationships and virtual consensus docking 
studies. Journal of Molecular Structure, 1137, 362–372. https://
doi.org/10.1016/j.molstruc.2017.02.049

Feher, M. (2006). Consensus scoring for protein–ligand interactions. 
Drug Discovery Today, 11(9). https://doi.org/10.1016/j.
drudis.2006.03.009

Feher, M., & Williams, C. I. (2012). Numerical errors and chaotic 
behavior in docking simulations. Journal of Chemical 
Information and Modeling, 52(3), 724–738. https://doi.
org/10.1021/ci200598m

Feinstein, W. P., & Brylinski, M. (2015). Calculating an optimal box size 
for ligand docking and virtual screening against experimental 
and predicted binding pockets. Feinstein and Brylinski Journal 
of Cheminformatics, 7. https://doi.org/10.1186/s13321-015-
0067-5

Ferrari, A. M., Wei, B. Q., Costantino, L., & Shoichet, B. K. (2004). 
Soft docking and multiple receptor conformations in virtual 
screening. Journal of Medicinal Chemistry, 47(21), 5076–5084. 
https://doi.org/10.1021/jm049756p

Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. 
(2015). Molecular docking and structure-based drug design 
strategies. Molecules (Vol. 20). https://doi.org/10.3390/
molecules200713384

Fischer, B., Merlitz, H., & Wenzel, W. (2008). Receptor flexibility for 
large-scale in silico ligand screens: Chances and challenges. 

Methods in Molecular Biology, 443, 353–364. https://doi.
org/10.1007/978-1-59745-177-2-18

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, 
A. J. (2016). Computational protein-ligand docking and virtual 
drug screening with the AutoDock suite. Nature Protocols, 
11(5), 905–919. https://doi.org/10.1038/nprot.2016.051

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, 
J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., 
Perry, J. K., Shaw, D. E., Francis, P., Shenkin, P. S. (2004). 
Glide: A New Approach for Rapid, Accurate Docking and 
Scoring. 1. Method and Assessment of Docking Accuracy. 
Journal of Medicinal Chemistry, 47(7), 1739–1749. https://
doi.org/10.1021/jm0306430

Galdeano, C., & Ciulli, A. (2016). Selectivity on-target of bromodomain 
chemical probes by structure-guided medicinal chemistry 
and chemical biology. Future Medicinal Chemistry, 8(13), 
1655–1680. https://doi.org/10.4155/fmc-2016-0059

Gervasio, F. L., Laio, A., & Parrinello, M. (2005). Flexible docking 
in solution using metadynamics. Journal of the American 
Chemical Society, 127(8), 2600–2607. https://doi.org/10.1021/
ja0445950

Glover, F., & Sörensen, K. (2015). Metaheuristics. Scholarpedia, 10(4), 
6532. https://doi.org/10.4249/scholarpedia.6532

González, M. A. (2011). Force fields and molecular dynamics 
simulations. Collection SFN, 12, 169–200. https://doi.
org/10.1051/sfn/201112009

Goodford, P. J. (1985). A Computational Procedure for Determining 
Energetically Favorable Binding Sites on Biologically 
Important Macromolecules. Journal of Medicinal Chemistry, 
28(7), 849–857. https://doi.org/10.1021/jm00145a002

Grebner, C., Iegre, J., Ulander, J., Edman, K., Hogner, A., & Tyrchan, 
C. (2016). Binding Mode and Induced Fit Predictions for 
Prospective Computational Drug Design. Journal of Chemical 
Information and Modeling, 56(4), 774–787. https://doi.
org/10.1021/acs.jcim.5b00744

Grosan, C., & Abraham, A. (2011). Machine Learning. In Intelligent 
Systems (Vol. 17, pp. 261–268). Springer International 
Publishing. https://doi.org/10.1007/978-3-642-21004-4_10

Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a 
protein-small molecule docking web service based on EADock 
DSS. Nucleic Acids Research, 39(SUPPL. 2). https://doi.
org/10.1093/nar/gkr366

Grosdidier, S., & Fernández-Recio, J. (2008). Identification of hot-
spot residues in protein-protein interactions by computational 
docking. BMC Bioinformatics, 9(1), 447. https://doi.
org/10.1186/1471-2105-9-447

Gürsoy, O., & Smieško, M. (2017). Searching for bioactive 
conformations of drug-like ligands with current force fields: 
How good are we? Journal of Cheminformatics, 9(1). https://
doi.org/10.1186/s13321-017-0216-0

Guvench, O., & MacKerell, A. D. (2008). Comparison of Protein 
Force Fields for Molecular Dynamics Simulations. Molecular 
Modeling of Proteins, 443, 63–88. https://doi.org/10.1007/978-
1-59745-177-2_4

https://doi.org/10.22201/fesz.23958723e.2018.0.143


Prieto-Martínez, F.D. et al.: Molecular  docking 832018
DOI: 10.22201/fesz.23958723e.2018.0.143

Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. (2002). Principles 
of docking: An overview of search algorithms and a guide to 
scoring functions. Proteins: Structure, Function and Genetics, 
47(4), 409–443. https://doi.org/10.1002/prot.10115

Harris, J. B., Eldridge, M. L., Sayler, G., Menn, F.-M., Layton, A. C., 
& Baudry, J. (2014). A computational approach predicting 
CYP450 metabolism and estrogenic activity of an endocrine 
disrupting compound (PCB-30). Environmental Toxicology and 
Chemistry, 33(7), 1615–1623. https://doi.org/10.1002/etc.2595

Hostaš, J., Řezáč, J., & Hobza, P. (2013). On the performance of the 
semiempirical quantum mechanical PM6 and PM7 methods for 
noncovalent interactions. Chemical Physics Letters, 568–569, 
161–166. https://doi.org/10.1016/j.cplett.2013.02.069 

Houston, D. R., & Walkinshaw, M. D. (2013). Consensus docking: 
Improving the reliability of docking in a virtual screening 
context. Journal of Chemical Information and Modeling, 53(2), 
384–390. https://doi.org/10.1021/ci300399w

Huang, N., Shoichet, B. K., & Irwin, J. J. (2006). Benchmarking Sets for 
Molecular Docking. Journal of Medicinal Chemistry, 49(23), 
6789–6801. https://doi.org/10.1021/jm0608356

Huang, S.-Y., Grinter, S. Z., & Zou, X. (2010). Scoring functions and 
their evaluation methods for protein–ligand docking: recent 
advances and future directions. Physical Chemistry Chemical 
Physics, 12(40), 12899–12908. https://doi.org/10.1039/
c0cp00151a

Huang, S. Y., & Zou, X. (2007). Ensemble docking of multiple 
protein structures: Considering protein structural variations 
in molecular docking. Proteins: Structure, Function and 
Genetics, 66(2), 399–421. https://doi.org/10.1002/prot.21214

Irwin, J. J., Raushel, F. M., & Shoichet, B. K. (2005). Virtual Screening 
against Metalloenzymes for Inhibitors and Substrates. 
Biochemistry, 44(37), 12316–12328. https://doi.org/10.1021/
bi050801k 

Ishchenko, A. V, & Shakhnovich, E. I. (2002). SMall Molecule Growth 
2001 (SMoG2001): An improved knowledge-based scoring 
function for protein-ligand interactions. Journal of Medicinal 
Chemistry, 45(13), 2770–2780. https://doi.org/10.1021/
jm0105833

Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). 
Development and validation of a genetic algorithm for flexible 
docking. Journal of Molecular Biology, 267(3), 727–748. 
https://doi.org/10.1006/jmbi.1996.0897

Jorgensen, W. L., & Thomas, L. L. (2008). Perspective on Free-Energy 
Perturbation Calculations for Chemical Equilibria. Journal of 
Chemical Theory and Computation, 4(6), 869–876. https://doi.
org/10.1021/ct800011m

Kannan, S., & Ganji, R. (2010). Porting Autodock to CUDA. World 
Congress on Computational Intelligence, 18–23.

Kapoor, K., McGill, N., Peterson, C. B., Meyers, H. V., Blackburn, M. 
N., & Baudry, J. (2016). Discovery of Novel Nonactive Site 
Inhibitors of the Prothrombinase Enzyme Complex. Journal of 
Chemical Information and Modeling, 56(3), 535–547. https://
doi.org/10.1021/acs.jcim.5b00596

Kelley, B. P., Brown, S. P., Warren, G. L., & Muchmore, S. W. (2015). 

POSIT: Flexible Shape-Guided Docking for Pose Prediction. 
Journal of Chemical Information and Modeling, 55(8), 
1771–1780. https://doi.org/10.1021/acs.jcim.5b00142

Khamis, M. A., Gomaa, W., & Ahmed, W. F. (2015). Machine learning 
in computational docking. Artificial Intelligence in Medicine. 
https://doi.org/10.1016/j.artmed.2015.02.002

King, A. M., & Aaron, C. K. (2015, February). Organophosphate and 
Carbamate Poisoning. Emergency Medicine Clinics of North 
America. https://doi.org/10.1016/j.emc.2014.09.010

Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking 
and scoring in virtual screening for drug discovery: methods 
and applications. Nat Rev Drug Discov, 3(11), 935–949. https://
doi.org/10.1038/nrd1549

Klausmeyer, P., Shipley, S. M., Zuck, K. M., & McCloud, T. G. (2011). 
Histone deacetylase inhibitors from Burkholderia thailandensis. 
Journal of Natural Products, 74(10), 2039–2044. https://doi.
org/10.1021/np200532d

Knegtel, R. M. ., Kuntz, I. D., & Oshiro, C. (1997). Molecular docking to 
ensembles of protein structures. Journal of Molecular Biology, 
266(2), 424–440. https://doi.org/10.1006/jmbi.1996.0776

Korb, O., Olsson, T. S. G., Bowden, S. J., Hall, R. J., Verdonk, M. 
L., Liebeschuetz, J. W., & Cole, J. C. (2012). Potential and 
Limitations of Ensemble Docking. Journal of Chemical 
Information and Modeling, (52), 1262–1274. https://doi.
org/10.1021/ci2005934

Korb, O., Stützle, T., & Exner, T. E. (2009). Empirical scoring functions 
for advanced Protein-Ligand docking with PLANTS. Journal 
of Chemical Information and Modeling, 49(1), 84–96. https://
doi.org/10.1021/ci800298z

Kramer, B., Rarey, M., & Lengauer, T. (1999). Evaluation of the 
FLEXX incremental construction algorithm for protein-ligand 
docking. Proteins, 37(2), 228–41.

Krieger, E., & Vriend, G. (2015). New ways to boost molecular 
dynamics simulations. Journal of Computational Chemistry, 
36(13), 996–1007. https://doi.org/10.1002/jcc.23899

Kukol, A. (2011). Consensus virtual screening approaches to 
predict protein ligands. European Journal of Medicinal 
Chemistry, 46(9), 4661–4664. https://doi.org/10.1016/j.
ejmech.2011.05.026

Kumalo, H. M., Bhakat, S., & Soliman, M. E. S. (2015). Theory and 
applications of covalent docking in drug discovery: Merits and 
pitfalls. Molecules, 20(2), 1984–2000. https://doi.org/10.3390/
molecules20021984

Kumar, A., & Zhang, K. Y. J. (2013). Investigation on the effect of 
key water molecules on docking performance in CSARdock 
exercise. Journal of Chemical Information and Modeling, 
53(8), 1880–1892. https://doi.org/10.1021/ci400052w

Kuroda, D., & Gray, J. J. (2016). Pushing the Backbone in Protein-
Protein Docking. Structure, 24(10), 1821–1829. https://doi.
org/10.1016/j.str.2016.06.025

Lavecchia, A., & Cerchia, C. (2015). In silico methods to address 
polypharmacology: Current status, applications and future 
perspectives. Drug Discovery Today. https://doi.org/10.1016/j.
drudis.2015.12.007

https://doi.org/10.22201/fesz.23958723e.2018.0.143


TIP Rev.Esp.Cienc.Quím.Biol.84                                                                                                       Vol. 21, Supl. 1
DOI: 10.22201/fesz.23958723e.2018.0.143

Lemmon, G., & Meiler, J. (2013). Towards Ligand Docking Including 
Explicit Interface Water Molecules. PLoS ONE, 8(6), e67536. 
https://doi.org/10.1371/ 

Li, A., Sun, H., Du, L., Wu, X., Cao, J., You, Q., & Li, Y. (2014). Discovery 
of novel covalent proteasome inhibitors through a combination 
of pharmacophore screening, covalent docking, and molecular 
dynamics simulations. Journal of Molecular Modeling, 20(11), 
2515. https://doi.org/10.1007/s00894-014-2515-y

Lie, M. A., Thomsen, R., Pedersen, C. N. S., Schiøtt, B., & Christensen, 
M. H. (2011). Molecular docking with ligand attached water 
molecules. Journal of Chemical Information and Modeling, 
51(4), 909–917. https://doi.org/10.1021/ci100510m

Lill, M. A. (2007). Multi-dimensional QSAR in drug discovery. Drug 
Discovery Today. https://doi.org/10.1016/j.drudis.2007.08.004

London, N., Farelli, J. D., Brown, S. D., Liu, C., Huang, H., Korczynska, 
M., Al-Obaidi, N. F., Babbitt, P. C., Almo, S. C., Allen, K. N., 
Shoichet, B. K. (2015). Covalent docking predicts substrates 
for haloalkanoate dehalogenase superfamily phosphatases. 
Biochemistry, 54(2), 528–537. https://doi.org/10.1021/
bi501140k

Lopes, P. E. M., Guvench, O., & Mackerell, A. D. (2015). Current status 
of protein force fields for molecular dynamics simulations. 
Methods in Molecular Biology, 1215, 47–71. https://doi.
org/10.1007/978-1-4939-1465-4_3

López-Camacho, E., García Godoy, M. J., García-Nieto, J., Nebro, 
A. J., & Aldana-Montes, J. F. (2015). Solving molecular 
flexible docking problems with metaheuristics: A comparative 
study. Applied Soft Computing, 28, 379–393. https://doi.
org/10.1016/j.asoc.2014.10.049

Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., 
& Sherman, W. (2013). Protein and ligand preparation: 
parameters, protocols, and influence on virtual screening 
enrichments. Journal of Computer-Aided Molecular Design, 
27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8

Marzaro, G., Guiotto, A., Borgatti, M., Finotti, A., Gambari, R., 
Breveglieri, G., & Chilin, A. (2013). Psoralen derivatives as 
inhibitors of NF-κB/DNA interaction: Synthesis, molecular 
modeling, 3D-QSAR, and biological evaluation. Journal 
of Medicinal Chemistry, 56(5), 1830–1842. https://doi.
org/10.1021/jm3009647

Mccall, K. A., Huang, C.-C., & Fierke, C. A. (2000). Zinc and Health: 
Current Status and Future Directions Function and Mechanism 
of Zinc Metalloenzymes 1. J. Nutr, 130, 1437–1446.

Mcgann, M. (2011). FRED Pose Prediction and Virtual Screening 
Accuracy. J. Chem. Inf. Model, 51, 578–596. https://doi.
org/10.1021/ci100436p

Medina-Franco, J. L., Giulianotti, M. A., Welmaker, G. S., & Houghten, 
R. a. (2013). Shifting from the single to the multitarget paradigm 
in drug discovery. Drug Discovery Today, 18(9–10), 495–501. 
https://doi.org/10.1016/j.drudis.2013.01.008

Medina-Franco, J. L., Méndez-Lucio, O., & Martinez-Mayorga, 
K. (2014). The interplay between molecular modeling and 
chemoinformatics to characterize protein-ligand and protein-
protein interactions landscapes for drug discovery. Advances 

in Protein Chemistry and Structural Biology, 96, 1–37. https://
doi.org/10.1016/bs.apcsb.2014.06.001

Méndez-Lucio, O., Naveja, J. J., Vite-Caritino, H., Prieto-Martínez, 
F. D., & Medina-Franco, J. L. (2016). Review. One Drug for 
Multiple Targets: A Computational Perspective. J. Mex. Chem. 
Soc., 60(3), 168–181.

Mendonça, E., Barreto, M., Guimarães, V., Santos, N., Pita, S., & 
Boratto, M. (2017). Accelerating Docking Simulation Using 
Multicore and GPU Systems. In O. Gervasi, B. Murgante, 
S. Misra, G. Borruso, C. M. Torre, A. M. A. C. Rocha, … A. 
Cuzzocrea (Eds.), International Conference on Computational 
Science and Its Applications (Vol. 10404, pp. 439–451). Cham: 
Springer International Publishing. https://doi.org/10.1007/978-
3-319-62392-4_32

Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular 
docking: a powerful approach for structure-based drug 
discovery. Current Computer-Aided Drug Design, 7(2), 
146–57. https://doi.org/10.2174/157340911795677602

Moitessier, N., Pottel, J., Therrien, E., Englebienne, P., Liu, Z., 
Tomberg, A., & Corbeil, C. R. (2016). Medicinal Chemistry 
Projects Requiring Imaginative Structure-Based Drug Design 
Methods. Accounts of Chemical Research, 49(9), 1646–1657. 
https://doi.org/10.1021/acs.accounts.6b00185

Monticelli, L., & Tieleman, D. P. (2013). Force fields for classical 
molecular dynamics. Methods in Molecular Biology (Clifton, 
N.J.), 924, 197–213. https://doi.org/10.1007/978-1-62703-
017-5_8

Morris, G. M., & Lim-Wilby, M. (2008). Molecular Docking. In 
Methods in molecular biology (Clifton, N.J.) (Vol. 443, pp. 
365–382). https://doi.org/10.1007/978-1-59745-177-2_19

Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., 
Goodsell, D. S., & Olson, A. J. (2009). Software news and 
updates AutoDock4 and AutoDockTools4: Automated docking 
with selective receptor flexibility. Journal of Computational 
Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/
jcc.21256

Motta, S., & Bonati, L. (2017). Modeling Binding with Large 
Conformational Changes: Key Points in Ensemble-Docking 
Approaches. Journal of Chemical Information and Modeling, 
acs.jcim.7b00125. https://doi.org/10.1021/acs.jcim.7b00125

Muegge, I. (2000). A knowledge-based scoring function for protein-
ligand interactions: Probing the reference state. In Perspectives 
in Drug Discovery and Design (Vol. 20, pp. 99–114). https://
doi.org/10.1023/A:1008729005958

Murphy, R. B., Repasky, M. P., Greenwood, J. R., Tubert-Brohman, I., 
Jerome, S., Annabhimoju, R., Boyles, N. A., Schmitz, C. D., 
Abel, R., Farid, R., Friesner, R. A. (2016). WScore: A Flexible 
and Accurate Treatment of Explicit Water Molecules in Ligand-
Receptor Docking. Journal of Medicinal Chemistry, 59(9), 
4364–4384. https://doi.org/10.1021/acs.jmedchem.6b00131

Murray, C. W., Auton, T. R., & Eldridge, M. D. (1998). Empirical scoring 
functions. II. The testing of an empirical scoring function for 
the prediction of ligand-receptor binding affinities and the use 
of Bayesian regression to improve the quality of the model. 

https://doi.org/10.22201/fesz.23958723e.2018.0.143


Prieto-Martínez, F.D. et al.: Molecular  docking 852018
DOI: 10.22201/fesz.23958723e.2018.0.143

Journal of Computer-Aided Molecular Design, 12(5), 503–19.
Nabuurs, S. B., Wagener, M., & De Vlieg, J. (2007). A flexible approach 

to induced fit docking. Journal of Medicinal Chemistry, 50(26), 
6507–6518. https://doi.org/10.1021/jm070593p

Neves, M. A. C., Totrov, M., & Abagyan, R. (2012). Docking and 
scoring with ICM: The benchmarking results and strategies for 
improvement. Journal of Computer-Aided Molecular Design, 
26(6), 675–686. https://doi.org/10.1007/s10822-012-9547-0

Nikitina, E., Sulimov, V., Zayets, V., & Zaitseva, N. (2004). 
Semiempirical Calculations of Binding Enthalpy for Protein-
Ligand Complexes. International Journal of Quantum 
Chemistry, 97(2), 747–763. https://doi.org/10.1002/qua.10778

Oferkin, I. V., Katkova, E. V., Sulimov, A. V., Kutov, D. C., Sobolev, 
S. I., Voevodin, V. V., & Sulimov, V. B. (2015). Evaluation of 
Docking Target Functions by the Comprehensive Investigation 
of Protein-Ligand Energy Minima. Advances in Bioinformatics, 
2015, 1–12. https://doi.org/10.1155/2015/126858

Ohno, K., Kamiya, N., Asakawa, N., Inoue, Y., & Sakurai, M. (2001). 
Application of an integrated MOZYME+DFT method to pKa 
calculations for proteins. Chemical Physics Letters, 341(3–4), 
387–392. https://doi.org/10.1016/S0009-2614(01)00499-7

Onawole, A. T., Sulaiman, K. O., Adegoke, R. O., & Kolapo, T. 
U. (2017). Identification of potential inhibitors against the 
Zika virus using consensus scoring. Journal of Molecular 
Graphics and Modelling, 73, 54–61. https://doi.org/10.1016/j.
jmgm.2017.01.018

Parikh, H. I., & Kellogg, G. E. (2014). Intuitive, but not simple: 
Including explicit water molecules in protein-protein docking 
simulations improves model quality. Proteins: Structure, 
Function and Bioinformatics, 82(6), 916–932. https://doi.
org/10.1002/prot.24466

Park, S. J., Kufareva, I., & Abagyan, R. (2010). Improved docking, 
screening and selectivity prediction for small molecule nuclear 
receptor modulators using conformational ensembles. Journal 
of Computer-Aided Molecular Design, 24(5), 459–471. https://
doi.org/10.1007/s10822-010-9362-4

Pason, L. P., & Sotriffer, C. A. (2016). Empirical Scoring Functions for 
Affinity Prediction of Protein-ligand Complexes. Molecular 
Informatics, 35(11–12), 541–548. https://doi.org/10.1002/
minf.201600048

Paul, D. S., & Gautham, N. (2017). iMOLSDOCK: Induced-fit docking 
using mutually orthogonal Latin squares (MOLS). Journal of 
Molecular Graphics and Modelling, 74, 89–99. https://doi.
org/10.1016/j.jmgm.2017.03.008

Pedretti, A., Villa, L., & Vistoli, G. (2004). VEGA - An open platform 
to develop chemo-bio-informatics applications, using plug-in 
architecture and script programming. Journal of Computer-
Aided Molecular Design, 18(3), 167–173. https://doi.
org/10.1023/B:JCAM.0000035186.90683.f2

Perola, E., Walters, W. P., & Charifson, P. S. (2004). A detailed 
comparison of current docking and scoring methods on systems 
of pharmaceutical relevance. Proteins: Structure, Function and 
Genetics, 56(2), 235–249. https://doi.org/10.1002/prot.20088

Plewczynski, D., Łażniewski, M., Grotthuss, M. Von, Rychlewski, 

L., & Ginalski, K. (2011). VoteDock: Consensus docking 
method for prediction of protein-ligand interactions. Journal 
of Computational Chemistry, 32(4), 568–581. https://doi.
org/10.1002/jcc.21642

Prieto-Martínez, F. D., & Medina-Franco, J. L. (2018). Charting the 
Bromodomain BRD4: Towards the Identification of Novel 
Inhibitors with Molecular Similarity and Receptor Mapping. 
Letters in Drug Design & Discovery, 14. https://doi.org/10.2
174/1570180814666171121145731

Ramírez, D., & Caballero, J. (2016). Is it reliable to use common 
molecular docking methods for comparing the binding affinities 
of enantiomer pairs for their protein target? International 
Journal of Molecular Sciences, 17(4), 1–15. https://doi.
org/10.3390/ijms17040525

Ran, T., Zhang, Z., Liu, K., Lu, Y., Li, H., Xu, J., Xiong, X., Zhang, Y., 
Xu, A., Lu, S., Liu, H., Lu, T., Chen, Y. (2015). Insight into the 
key interactions of bromodomain inhibitors based on molecular 
docking, interaction fingerprinting, molecular dynamics and 
binding free energy calculation. Molecular bioSystems, 11(5), 
1295–1304. https://doi.org/10.1039/c4mb00723a

Roberts, B. C., & Mancera, R. L. (2008). Ligand-protein docking 
with water molecules. Journal of Chemical Information and 
Modeling, 48(2), 397–408. https://doi.org/10.1021/ci700285e

Ross, G. A., Morris, G. M., & Biggin, P. C. (2012). Rapid and accurate 
prediction and scoring of water molecules in protein binding 
sites. PLoS ONE, 7(3), e32036. https://doi.org/10.1371/journal.
pone.0032036

Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., Garmendia-
Doval, A. B., Juhos, S., Schmidtke, P., Barril, X., Hubbard, R. 
E., Morley, S. D. (2014). rDock: A Fast, Versatile and Open 
Source Program for Docking Ligands to Proteins and Nucleic 
Acids. PLoS Computational Biology, 10(4). e100357. https://
doi.org/10.1371/journal.pcbi.1003571 

Sacquin-Mora, S., & Prévost, C. (2015). Docking Peptides on Proteins: 
How to open a lock, in the dark, with a flexible key. Structure, 
23(8), 1373–1374. https://doi.org/10.1016/j.str.2015.07.004 

Saldívar-González, F. I., Prieto-Martínez, F. D., & Medina-Franco, 
J. L. (2017). Descubrimiento y desarrollo de fármacos: un 
enfoque computacional. Educación Química, 28(1), 51–58. 
https://doi.org/10.1016/j.eq.2016.06.002

Samanta, P. N., & Das, K. K. (2017). Inhibition activities of catechol 
diether based non-nucleoside inhibitors against the HIV 
reverse transcriptase variants: Insights from molecular docking 
and ONIOM calculations. Journal of Molecular Graphics 
and Modelling, 75, 294–305. https://doi.org/10.1016/j.
jmgm.2017.06.011

Santos-Martins, D., Forli, S., Ramos, M. J., & Olson, A. J. (2014). 
AutoDock4 Zn : An Improved AutoDock Force Field for 
Small-Molecule Docking to Zinc Metalloproteins. Journal 
of Chemical Information and Modeling, 54(8), 2371–2379.  
https://doi.org/10.1021/ci500209e

Scholz, C., Knorr, S., Hamacher, K., & Schmidt, B. (2015). 
DOCKTITE-A highly versatile step-by-step workflow for 
covalent docking and virtual screening in the molecular 

https://doi.org/10.22201/fesz.23958723e.2018.0.143


TIP Rev.Esp.Cienc.Quím.Biol.86                                                                                                       Vol. 21, Supl. 1
DOI: 10.22201/fesz.23958723e.2018.0.143

operating environment. Journal of Chemical Information and 
Modeling, 55(2), 398–406. https://doi.org/10.1021/ci500681r

Schröder, J., Klinger, A., Oellien, F., Marhöfer, R. J., Duszenko, M., 
& Selzer, P. M. (2013). Docking-based virtual screening of 
covalently binding ligands: An orthogonal lead discovery 
approach. Journal of Medicinal Chemistry, 56(4), 1478–1490. 
https://doi.org/10.1021/jm3013932

Senter, P. D., & Sievers, E. L. (2012). The discovery and development 
of brentuximab vedotin for use in relapsed Hodgkin lymphoma 
and systemic anaplastic large cell lymphoma. Nature 
Biotechnology, 30(7), 631–637. https://doi.org/10.1038/
nbt.2289

Sheng, Y., Chen, Y., Wang, L., Liu, G., Li, W., & Tang, Y. (2014). 
Effects of protein flexibility on the site of metabolism 
prediction for CYP2A6 substrates. Journal of Molecular 
Graphics and Modelling, 54, 90–99. https://doi.org/10.1016/j.
jmgm.2014.09.005

Sørensen, J., Demir, Ö., Swift, R. V, Feher, V. A., & Amaro, R. E. 
(2014). Molecular docking to flexible targets. In Molecular 
Modeling of Proteins: Second Edition (Vol. 1215, pp. 445–469). 
https://doi.org/10.1007/978-1-4939-1465-4_20

Spitzer, R., & Jain, A. N. (2012). Surflex-Dock: Docking benchmarks 
and real-world application. Journal of Computer-Aided 
Molecular Design, 26(6), 687–699. https://doi.org/10.1007/
s10822-011-9533-y

Sridhar, A., Ross, G. A., Biggin, P. C., Ward, S., Pardo, L., & Mortenson, 
P. (2017). Waterdock 2.0: Water placement prediction for Holo-
structures with a pymol plugin. PLOS ONE, 12(2), e0172743. 
https://doi.org/10.1371/journal.pone.0172743

Stank, A., Kokh, D. B., Fuller, J. C., & Wade, R. C. (2016). Protein 
Binding Pocket Dynamics. Accounts of Chemical Research, 
49(5), 809–815. https://doi.org/10.1021/acs.accounts.5b00516

Stewart, J. J. P. (2008). Application of the PM6 method to modeling the 
solid state. Journal of Molecular Modeling, 14(6), 499–535. 
https://doi.org/10.1007/s00894-008-0299-7

Sulimov, A. V., Kutov, D. C., Katkova, E. V., Ilin, I. S., & Sulimov, V. B. 
(2017). New generation of docking programs: Supercomputer 
validation of force fields and quantum-chemical methods for 
docking. Journal of Molecular Graphics and Modelling, 78, 
139–147. https://doi.org/10.1016/j.jmgm.2017.10.007

Toledo Warshaviak, D., Golan, G., Borrelli, K. W., Zhu, K., & Kalid, 
O. (2014). Structure-based virtual screening approach for 
discovery of covalently bound ligands. Journal of Chemical 
Information and Modeling, 54(7), 1941–1950. https://doi.
org/10.1021/ci500175r

Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed 
and accuracy of docking with a new scoring function, efficient 
optimization, and multithreading. Journal of Computational 
Chemistry, 31(2), NA-NA. https://doi.org/10.1002/jcc.21334

Tuccinardi, T., Poli, G., Romboli, V., Giordano, A., & Martinelli, A. 
(2014). Extensive consensus docking evaluation for ligand pose 
prediction and virtual screening studies. Journal of Chemical 
Information and Modeling, 54(10), 2980–2986. https://doi.
org/10.1021/ci500424n

Uehara, S., & Tanaka, S. (2016). AutoDock-GIST: Incorporating 
thermodynamics of active-site water into scoring function for 
accurate protein-ligand docking. Molecules, 21(11). https://
doi.org/10.3390/molecules21111604

Uehara, S., & Tanaka, S. (2017). Cosolvent-Based Molecular Dynamics 
for Ensemble Docking: Practical Method for Generating 
Druggable Protein Conformations. Journal of Chemical 
Information and Modeling, 57(4), 742–756. https://doi.
org/10.1021/acs.jcim.6b00791

Unzue, A., Zhao, H., Lolli, G., Dong, J., Zhu, J., Zechner, M., Dolbois, 
A., Caflisch, A., Nevado, C. (2016). The “gatekeeper” 
Residue Influences the Mode of Binding of Acetyl Indoles 
to Bromodomains. Journal of Medicinal Chemistry, 59(7), 
3087–3097. https://doi.org/10.1021/acs.jmedchem.5b01757

Vahl Quevedo, C., De Paris, R., D. Ruiz, D., & Norberto De Souza, 
O. (2014). A strategic solution to optimize molecular docking 
simulations using Fully-Flexible Receptor models. Expert 
Systems with Applications, 41(16), 7608–7620. https://doi.
org/10.1016/j.eswa.2014.05.038

Vakser, I. A. (2014). Protein-protein docking: From interaction to 
interactome. Biophysical Journal, 107(8), 1785–1793. https://
doi.org/10.1016/j.bpj.2014.08.033

VanderMolen, K. M., McCulloch, W., Pearce, C. J., & Oberlies, N. 
H. (2011). Romidepsin (Istodax, NSC 630176, FR901228, 
FK228, depsipeptide): a natural product recently approved 
for cutaneous T-cell lymphoma. The Journal of Antibiotics, 
64(8), 525–31. https://doi.org/10.1038/ja.2011.35

Venkatachalam, C. M., Jiang, X., Oldfield, T., & Waldman, M. (2003). 
LigandFit: a novel method for the shape-directed rapid docking 
of ligands to protein active sites. Journal of Molecular Graphics 
and Modelling, 21(4), 289–307. https://doi.org/10.1016/S1093-
3263(02)00164-X

Verdonk, M. L., Taylor, R. D., Chessari, G., & Murray, C. W. (2007). 
Illustration of Current Challenges in Molecular Docking. In 
Structure-Based Drug Discovery (pp. 201–221). Dordrecht: 
Springer Netherlands. https://doi.org/10.1007/1-4020-4407-
0_8

Vilar, S., & Costanzi, S. (2013). Application of Monte Carlo-based 
receptor ensemble docking to virtual screening for GPCR 
ligands. Methods in Enzymology, 522, 263–278. https://doi.
org/10.1016/B978-0-12-407865-9.00014-5

Vilar, S., Cozza, G., & Moro, S. (2008). Medicinal Chemistry and 
the Molecular Operating Environment (MOE): Application 
of QSAR and Molecular Docking to Drug Discovery. Current 
Topics in Medicinal Chemistry, 8(18), 1555–1572. https://doi.
org/10.2174/156802608786786624

Vreven, T., Moal, I. H., Vangone, A., Pierce, B. G., Kastritis, P. 
L., Torchala, M., Chaleil, R., Jiménez-García, B., Bates, P. 
A., Fernandez-Recio, J., Bonvin, A. M. M. J. J., Weng, Z. 
(2015). Updates to the Integrated Protein-Protein Interaction 
Benchmarks: Docking Benchmark Version 5 and Affinity 
Benchmark Version 2. Journal of Molecular Biology, 427(19), 
3031–3041. https://doi.org/10.1016/j.jmb.2015.07.016

Wada, M., & Sakurai, M. (2005). A quantum chemical method for rapid 

https://doi.org/10.22201/fesz.23958723e.2018.0.143


Prieto-Martínez, F.D. et al.: Molecular  docking 872018
DOI: 10.22201/fesz.23958723e.2018.0.143

optimization of protein structures. Journal of Computational 
Chemistry, 26(2), 160–168. https://doi.org/10.1002/jcc.20154

Wagener, M., Ve Vlieg, J., & Nabuurs, S. B. (2012). Flexible 
protein-ligand docking using the fleksy protocol. Journal of 
Computational Chemistry, 33(12), 1215–1217. https://doi.
org/10.1002/jcc.22948

Wang, C., Bradley, P., & Baker, D. (2007). Protein-Protein Docking 
with Backbone Flexibility. Journal of Molecular Biology, 
373(2), 503–519. https://doi.org/10.1016/j.jmb.2007.07.050

Wang, R., Lu, Y., & Wang, S. (2003). Comparative evaluation of 11 
scoring functions for molecular docking. Journal of Medicinal 
Chemistry, 46(12), 2287–2303. https://doi.org/10.1021/
jm0203783

Wang, R., & Wang, S. (2001). How does consensus scoring work for 
virtual library screening? An idealized computer experiment. 
Journal of Chemical Information and Computer Sciences, 
41(5), 1422–1426.  https://doi.org/10.1021/ci010025x 

Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Xu, L., Li., Y., Tian, 
S., Hou, T. (2016). Comprehensive evaluation of ten docking 
programs on a diverse set of protein-ligand complexes: the 
prediction accuracy of sampling power and scoring power. 
Physical Chemistry Chemical Physics : PCCP, 18, 12964–
12975.  https://doi.org/10.1039/c6cp01555g

Warren, G. L., Do, T. D., Kelley, B. P., Nicholls, A., & Warren, S. 
D. (2012). Essential considerations for using protein-ligand 
structures in drug discovery. Drug Discovery Today, 17(23–24), 
1270–1281.  https://doi.org/10.1016/j.drudis.2012.06.011

Waszkowycz, B., Clark, D. E., & Gancia, E. (2011). Outstanding 
challenges in protein-ligand docking and structure-based virtual 
screening. Wiley Interdisciplinary Reviews: Computational 

Molecular Science, 1(2), 229–259.  https://doi.org/10.1002/
wcms.18

Xu, M., & Lill, M. A. (2013). Induced fit docking, and the use of QM/
MM methods in docking. Drug Discovery Today: Technologies.  
https://doi.org/10.1016/j.ddtec.2013.02.003

Yan, C., Xu, X., & Zou, X. (2016). Fully Blind Docking at the Atomic 
Level for Protein-Peptide Complex Structure Prediction. 
Structure, 24(10), 1842–1853. https://doi.org/10.1016/j.
str.2016.07.021

Yang, H., Zhou, Q., Li, B., Wang, Y., Luan, Z., Qian, D., & Li, H. (2010). 
GPU Acceleration of Dock6’s Amber Scoring Computation. 
In Advances in experimental medicine and biology (Vol. 680, 
pp. 497–511). Springer International Publishing. https://doi.
org/10.1007/978-1-4419-5913-3_56

Yang, J. M., & Chen, C. C. (2004). GEMDOCK: A Generic Evolutionary 
Method for Molecular Docking. Proteins: Structure, Function 
and Genetics, 55(2), 288–304. https://doi.org/10.1002/
prot.20035

Zhao, H., Gartenmann, L., Dong, J., Spiliotopoulos, D., & Caflisch, 
A. (2014). Discovery of BRD4 bromodomain inhibitors by 
fragment-based high-throughput docking. Bioorganic and 
Medicinal Chemistry Letters, 24(11), 2493–2496. https://doi.
org/10.1016/j.bmcl.2014.04.017

Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). 
SwissParam: A fast force field generation tool for small organic 
molecules. Journal of Computational Chemistry, 32(11), 
2359–2368. https://doi.org/10.1002/jcc.21816

Zou, K. H., O’Malley, A. J., & Mauri, L. (2007). Receiver-Operating 
Characteristic Analysis for Evaluating Diagnostic Tests and 
Predictive Models. Circulation, 115(5), 654.

https://doi.org/10.22201/fesz.23958723e.2018.0.143

