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A low-dimensional method, based on the use of
multiple fusion-based similarity measures, is
described for graphically depicting and character-
izing relationships among molecules in compound
databases. The measures are used to construct
multi-fusion similarity maps that characterize the
relationship of a set of ’test’ molecules to a set of
’reference’ molecules. The reference set is very
general and can be made of molecules from, for
example, the set of test molecules itself (the self-
referencing case), from a small library or large
compound collection, or from actives in a given
assay or group of assays. The test set is any col-
lection of compounds to be analyzed with respect
to the specified reference set. Multiple fusion sim-
ilarity measures tend to provide more information
than single fusion-based measures, including
information on the nature of the chemical-space
neighborhoods surrounding reference-set mole-
cules. A general discussion is presented on how to
interpret multi-fusion similarity maps, and several
examples are given that illustrate how these maps
can be used to compare compound libraries or col-
lections, to select compounds for screening or
acquisition, and to identify new active molecules
using ligand-based virtual screening.
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Rapid growth in the size and availability of compound databases (1)
has created the need for effective computational tools with which
to analyze them. Many of these tools are based on the concept of
chemical space (2–4), which provides a suitable framework for char-
acterizing and comparing databases. As in the case of abstract
mathematical spaces (5), a chemical space is made up of a set of
points, representing the molecules (objects) in the space, and one
or more relations (e.g. distances or similarities and associated prop-
erties such as bioactivities) on the set of points. Chemical spaces
are typically represented as co-ordinate-based spaces, where each
co-ordinate axis is defined by some type of molecular descriptor (6),
but this is not absolutely required. For example, pairwise similarities
(7) among sets of molecules are also suitable, and such 'coordi-
nate-free' spaces can be transformed into co-ordinate-based spaces
by a variety of methods (8–12). Unfortunately, chemical spaces tend
to be of relatively high-dimension so as to preclude their visual
depiction in two or three dimensions, but this can overcome to
some extent by a number of available methods, affording the possi-
bility that visual data analysis, a useful tool in cheminformatics,
can be carried out.

Although visual data analysis is quite useful, in many cases cer-
tain features in a given chemical space can become obscured.
For example, the relative ordering of nearest neighbors (NNs;
e.g. first-NN, second-NN, third-NN, etc.) with respect to a given
query molecule or the magnitude of similarity between two mol-
ecules may be difficult to discern visually. In addition, it is not
always possible to represent all of the features of high-dimen-
sional chemical spaces in lower-dimensional spaces. Thus, a goal
of the current work was the development of new, low-dimen-
sional representations that capture features of high-dimensional
chemical spaces that may be missed in lower-dimensional chemi-
cal-space representations. Such novel low-dimensional representa-
tions will clarify these relationships and, thus, enhance scientific
visualization.

A number of questions arise in the analysis of compound databases
in chemical space: How diverse are the compounds in the data-
base? What is the distribution of compounds within chemical
space? Where are the densely and sparsely populated regions and
what molecules are found there? Where are the active compounds
located? How similar are the compounds in one database to those
in another? Which compounds should be selected for a screening
campaign? Which compounds should be purchased to augment a
compound collection?
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There are a variety of methods for tackling these questions. Two
approaches, cell-based and distance- or similarity-based, are com-
monly used to address these questions. The first approach, which
is generally applied in low-dimensional chemical spaces, involves
partitioning the space into a set of multi-dimensional hypercubes,
typically of equal size (13–16), although cells with more complex
geometries have also been discussed (17,18). Numerous applica-
tions of cell-based methods have demonstrated their usefulness in
many aspects of chemical-space analysis (19). The second approach
includes a wide variety of methods that make use of information
on the distance or similarity between pairs of compounds within a
chemical space. The most important of these are clustering (20–24)
and NN methods (25–30). Other methods based information theory
(31) and self-organizing maps (32) have also been applied.

The current work adopts a NN approach and uses molecular simi-
larity to characterize the degree to which a given molecule is a NN
(e.g. first-NN, second-NN, third-NN, etc.) of a specific reference
molecule or set of reference molecules. As chemical spaces are
highly representation dependent, two different representations of
the same set of molecules can give rise to entirely different chemi-
cal spaces (7). Thus, the results obtained with respect to one repre-
sentation will not, in general, be in accord with those obtained
with another representation. This general but daunting feature of
chemical spaces was clearly pointed several years ago in the work
of Sheridan and Kearsely (33). A variety of approaches have been
considered for ameliorating the representation problem, such as by
combining information from multiple chemistry spaces (30) or by
using multiple similarity measures (34).

Over the last few years, data-fusion methods have been popularized
by the Willett group at the University of Sheffield (35–37). These
methods were developed in the engineering field as a way to com-
bine data from a number of sources (38,39). In chemistry, data
fusion, called similarity fusion, is typically used as a way to identify
NNs of a single reference molecule by combining the rank ordering
or similarities of NNs obtained from multiple similarity measures
with respect to the same reference molecule. Numerous combining
rules have been developed to accomplish this task. The most com-
mon ones are max-fusion and sum-fusion. In max-fusion, the mole-
cule with the highest ranking or largest similarity score with
respect to a given reference molecule, taken over all of the similar-
ity measures, is chosen. In sum-fusion, the molecule with highest
score obtained by summing the rankings or similarities with respect
to a given reference molecule over all of the similarity measures, is
chosen. Mean-fusion is simply sum-fusion normalized by the number
of similarity measures used. Quantile-based fusion rules offer an
alternative to the combining rules described above. Preliminary
studies in our laboratories show that mean-fusion performs in an
analogous manner to median or other quantile-based fusion mea-
sures (e.g. 90-th percentile), and thus, these measures are not con-
sidered further in this work.

The Willett group has also developed a modified approach called
group fusion that applies the data-fusion procedure to multiple ref-
erence or query molecules (35,37), which is based on several earlier
works (40,41). In contrast to similarity fusion, only a single similarity
method is used in group fusion, but the sum, average, etc. similarity

is computed with respect to the entire set of reference molecules.
As shown by Hert et al. (35) in their seminal work, the use of simi-
larity values generally produced results that were superior to those
obtained based on rankings. Thus, in this work only similarity scores
are considered. A recent extension of this method, called turbo-sim-
ilarity searching, assumes that all NNs of known actives are also
active, and then applies group fusion to this augmented reference
set (25,42).

The different implementations of fusion-based similarity are
designed to enhance the effectiveness of ligand-based virtual
screening over that obtained by more 'traditional' similarity meth-
ods, although this may not always be the case. Similarity-based
approaches, in general, and fusion-based approaches, in particular,
are usually evaluated by 'numerical experiments' that attempt to
assess the recall rate or some related measure such as the area
under a ROC curve (43), which measures how effective a particular
procedure is in recovering the remaining actives from a data set of
known actives given a subset of these actives as reference mole-
cules. Several studies are based on the evaluation of multiple-
fusion rules to identify the 'best rule' (35,44,45).

In this study, fusion-based similarity is applied to the visual charac-
terization and comparison of compound databases by employing
multiple fusion rules in two-dimensional maps called multi-fusion
similarity (MFS) maps. The focus of the approach is on the relation-
ship of molecules in a 'test' set to molecules in a given reference
set, which need not be biologically active, in contrast to the situa-
tion in typical virtual-screening applications. The fusion data gener-
ated in a given study is typically plotted in two dimensions, where
the ordinate represents the max-fusion values and the abscissa the
average-fusion values. Each of the points in the plot is associated
with a specific molecule in the test set, and its position is deter-
mined by the corresponding fusion values computed with respect to
molecules in the reference set.

The combination of fusion rules presented in this paper expands
the current applications of fusion-based similarity. Combining fusion
rules in low-dimensional maps provides powerful visual tools not
only in ligand-based virtual screening applications, but also in diver-
sity analysis of compound libraries or collections; comparing com-
pound libraries or collections; compound acquisition; and design of
focused and diverse combinatorial libraries as summarized in
Table 1.

The test and the reference sets can be obtained from small
libraries, combinatorial libraries, large compound collections, sets of
active compounds, etc., or any combination of them. In the present
study, a number of compound collections ⁄ libraries covering a range
of sizes and diversities were investigated. These included a collec-
tion of known drug molecules ('DrugBank'; 46), a diverse collection
of molecules available from the National Cancer Institute ('NCIDiv'a)
a library containing molecules active in a number of CNS assays
('CNS'b) and a library of molecules active in a kappa opioid receptor
assay ('Kappa') obtained from the World of Molecular Bioactivity
(WOMBAT; 47). The characteristics of the four data sets are sum-
marized in Table 2; further discussion of the properties is provided
in Section Overview of compound databases used in this work.
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A number of analyses are carried out that illustrate the multi-fusion
approach. These include intra-library or intra-collection diversity
analysis, where both the test and reference sets are taken to be
identical (the so-called 'self-referencing' case), inter-library or inter-
collection comparisons, selection of compounds for screening and
acquisition, ligand-based virtual screening. In all of the examples,
emphasis is placed on the graphical depiction of the multiple,
fusion-based similarity data in ways that facilitate visual data anal-
ysis. Section Methodology presents a description of MFS maps, the
method to obtain these maps, and general guidelines for their inter-
pretation. Section Overview of compound databases used in this
work provides an overview of the compound databases involved in
this study. Section Results and Discussion describes a number of
applications of the approach (vide supra). Section Conclusions con-
cludes with a summary of the work and several conclusions.

Methodology

Basis of the multi-fusion approach: generating
multi-fusion similarity maps
In all computations carried out in this work, molecules are repre-
sented by 2D MACCS key fingerprintsc as implemented in the
Molecular Operating Environment (MOE) programd and the similarity
of the i-th and j-th molecules is computed using the well-known
Tanimoto similarity coefficient (7,48),

T ði; jÞ ¼ c
a þ b � c

ð1Þ

where a and b are the number of fragment bits corresponding to
the i-th and j-th molecules and c is the number of fragment bits
common to both molecules. Despite some caveats related to size-
dependent effects (49,50), the Tanimoto coefficient is the measure

of choice to asses the molecular similarity of molecules based on
2D fingerprints, because on its extensive usage in a wide variety of
studies (37).

Fusion similarity scores ('fused scores') are calculated for each of
the t molecules in the test set, i ¼ 1; 2 ; :::; t , with respect to all n
molecules in the reference set, r ¼ 1; 2 ; :::; n, using a particular
fusion rule (35,37)

max-fusion:

F max
n ðiÞ ¼ max

n

r¼1
T ði ; rÞf g ; i ¼ 1; 2; :::; t ð2Þ

sum-fusion:

F sum
n ðiÞ ¼

Xn

r¼1

T ði ; rÞ ; i ¼ 1; 2; :::; t ð3Þ

mean-fusion:

F mean
n ðiÞ ¼ 1

n

Xn

r¼1

T ði ; rÞ ¼ 1
n

F sumðiÞ i ¼ 1; 2; . . . ; t ð4Þ

Mean-fusion corrects sum-fusion scores for the size of the refer-
ence set, and thus is appropriate when multiple reference sets of
significantly different sizes are being considered, as is the case
here. In addition, the inequality given in eqn 5, which can be
derived from eqns 2 and 4,

F mean
n ðiÞ � F max

n ðiÞ ; i ¼ 1; 2; :::; t ð5Þ

shows that mean-fusion similarity may be equal to but is never
greater than the corresponding max-fusion value. Equality occurs in
the case of 'classical' similarity searching, where the reference set
consists of a single compound. In such a case, all of the points lie
on the diagonal in Figure 1, and both fusion-based similarity mea-
sures yield identical results.

Table 1: Potential applications
of multi-fusion similarity maps Applications Reference set Section discussed

Combinatorial library design Enumerated combinatorial library
and ⁄ or set of actives

General overview

Comparing compound collections Compound collections Comparing compound collections
Diversity analysis (profile) Self-reference Comparing compound collections
Compound selection Existing compound collection Compound selection and acquisition
Compound acquisition Existing compound collection Compound selection and acquisition
Ligand-based virtual screening Actives Ligand-based virtual screening

Table 2: Databases employed
in this study

Database General contents Size

Similarity*

ReferenceMean SD

DrugBank Database with a wide range of drugs including
FDA-approved and experimental drugs

1055 0.314 0.130 46

NCI diversity Diverse collection of molecules available from
the National Cancer Institute

1990 0.282 0.117 a

CNS Collection of FDA-approved psychiatric drugs 77 0.361 0.159 b

Kappa Library of molecules active in a kappa opioid
receptor assay obtained from WOMBAT

196 0.604 0.139 47

*Tanimoto similarity with MACCS key fingerprints were used to compute similarity (see Section Overview of com-
pound databases used in this work for further discussion).
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As illustrated in Figure 1, MFS maps are two-dimensional. The
ordinate corresponds to the max-fusion similarity rule and the
abscissa to either the sum- or mean-fusion similarity rule.
The latter is chosen in this work as it is independent of the
size of the reference set (vide supra). Each point on the plot
represents a test set molecule, whose location depends on the
values of the fusion-based similarity measures defined in eqns
2–4. The diagonal line in Figure 1 divides the figure into two,
equal-size triangular regions. Because of the relationship given in
eqn 5, test set molecules cannot lie within the lower triangular
region shaded in grey, as it is not possible for test set mole-
cules to have both low max-fusion and high mean-fusion similar-
ity values. Points that lie in the upper triangular region,
including the diagonal line, satisfy eqn 5 and correspond to
allowable pairs of fusion similarity values. The triangular shape
of the allowed region in Figure 1 shows that as max-fusion sim-
ilarity decreases, the corresponding range of allowed mean-fusion
values becomes smaller. In this case, little is gained using the
multi-fusion approach. As max-fusion similarity increases toward
unity, the corresponding range of allowed mean-fusion values
becomes quite large indicating, as will be discussed in Section
Interpreting multi-fusion similarity maps, the potential for a sig-
nificant variation in the geometric relationship of test set mole-
cules to molecules in the reference set. When a subset of test-
set molecules with high max-fusion similarities also possess a
range of mean-fusion values, the power of the multi-fusion
approach is greatest as the discriminating power of mean-fusion
similarity becomes significant. On the other hand, when the
range of mean-fusion values is limited, the discriminating power
of the mean-fusion similarity also is diminished. Four prototypical
examples described in Section Interpreting multi-fusion similarity
maps illustrate these points in more detail, including the applica-
tion of MFS maps in the self-reference case.

Interpreting multi-fusion similarity maps

Prototype data set
The fusion-based approach described above is applied to a subset
of 50 molecules obtained from the Binding Database (51), a public
database that is well suited to the study of structure–activity rela-
tionships, to illustrate how MFS maps can be interpreted. The mol-
ecules were selected in such a way as to ensure that a variety of
molecular scaffolds is chosen from those available in the database.
The following protocol is used to generate a chemistry-space. First,
the molecular similarities are computed, as described in Section
Basis of the multi-fusion approach: generating multi-fusion similarity
maps, for the subset of 50 molecules, which has a mean Tanimoto
similarity of 0.40 with a standard deviation of 0.20. Secondly, a
principal component analysis (9) is carried out taking the similarity
matrix as the data matrix (8). Thirdly, as illustrated in Figure 2A,
the molecules are displayed in the 3D subspace formed by the first
three principal components, which represents about 76% of the var-
iance of the sample. The molecules are also clustered using the
complete-linkage hierarchical clustering algorithm implemented in
Spotfiree; the dendrogram for this clustering is depicted in Figure 2B.
The Roman numerals to the right of Figure 2B label six of the clus-
ters in the partition of the data set induced by a molecular similar-
ity value of 0.85, which is represented by the vertical, dashed red
line in the figure. Each of the labeled clusters contains at least four
molecules and has a minimum intra-cluster similarity of ‡0.87, as
shown in the insert table in Figure 2. The six clusters are colored
red in the chemical space depicted in Figure 2A.

Interpreting MFS maps with respect to
different model reference sets
The 50 molecules of the prototype set are further divided into two
subgroups: five molecules are chosen to represent the reference set
and the remaining 45 molecules the test set. Each of the molecules
in the reference set is also compared with all of the other mole-
cules in the set but not with itself, a procedure called self-referenc-
ing that is discussed further in Case 4. To illustrate the different
features of MFS maps, four choices of the five reference-set mole-
cules are considered. These choices correspond to four cases that
clarify a number of the salient features of the proposed approach
(vide infra). All of the chemical spaces depicted in Figures 2A, 3A,
4A, 5A and 6A involve the same set of 50 molecules and are, thus,
identical, although they may appear somewhat different because of
the viewing angles in the figures. For consistency, molecules in the
reference set are colored red and those in the test set are colored
blue, except for a few that are colored yellow to distinguish them
from the bulk of the test set molecules.

Case 1 The reference set of molecules is made up of two mole-
cules from cluster III, two from cluster VI, and one from cluster V.
It is clear from Figure 2 that all of the clusters have high intra-clus-
ter similarity and are well separated in chemical space. This is also
illustrated in Figure 3A that depicts the chemical space and
Figure 3B that depicts the corresponding MFS map. Specific subsets
of the test-set molecules are labeled {a}, {b}, and {c} to clearly
distinguish them from the remaining test-set molecules in Figure 3.
The positions of the test set molecules in Figure 3B depend on

Figure 1: A schematic depiction of the general form of an MFS
map. All of the test-set molecules lie in the upper triangular portion
of the map and satisfy the relationship F mean

n ðiÞ � F max
n ðiÞ. In

the case of equality, which only obtains for 'classical' similarity
searching where each reference-set molecule is treat independently
using a single similarity measure, the test-set molecules lie on the
diagonal.
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their relationship to the molecules in the reference set, while the
position of the reference-set molecules indicates the relationship of
the test set molecules to each other (i.e. self-referencing). The tight
cluster of reference-set molecules located at a max-fusion value of
approximately 0.9 and a mean-fusion value near 0.5 represents the
subset of reference molecules that lie near to the clusters of test
set molecules denoted by {b} in Figure 3A. In contrast, the lone
reference-set molecule located at max-fusion and mean-fusion val-
ues of approximately 0.2 represents the single reference-set mole-
cule located near {a} in Figure 3A.

The subsets in the MFS map distinguished by {a}, {b}, and {c} are
associated with the corresponding regions in the chemical space
(vide supra) depicted in Figure 3A. These regions are interpreted in
the following way: {a} corresponds to a pair of molecules that are
very similar to the single reference molecule located nearby (high
max-fusion value) but far from the remaining four reference com-
pounds (low mean-fusion value); {b} corresponds to 13 molecules
with max-fusion values of ‡0.90 with respect to the reference mol-
ecules that are located in clusters III and VI of Figure 2A. In addi-
tion, as their mean-fusion values are ‡0.54 they are also similar to

all of the reference molecules located in these clusters, which is in
stark contrast to the molecules in {a} that have much lower mean-
fusion values. If, for example, the reference set was made up only
of active molecules, molecules in the {b} test subset would be
more likely to be active than those in the {a} test subset. This fol-
lows since the likelihood that a molecule located within the neigh-
borhood of a set of known actives is also active is greater than the
likelihood of a molecule located near to a single, isolated active is
active. However, this is not to say that the region of chemical
space surrounding the singleton active is not filled with actives,
which may very well be the case, but rather than no data exists
that supports this contention. Thus, given the data, the active in
the latter case could be the result of an assay error or of an impro-
per assignment, whereas in the former case the presence of a num-
ber of nearby actives reinforces, but does not prove, the belief that
this is, indeed, an 'active region' in chemical space. As in group
fusion, MFS maps do not distinguish the intra-cluster similarity of
test-set molecules in, for example, {b}. As illustrated in this case,
the molecules in {b} reside in two compact but well-separated
clusters, while {c} corresponds to a single molecule that is very
dissimilar from any of the molecules in the reference set.
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Figure 2: (A) Depiction of the chemical space of the 50 molecules used to describe the prototype MFS maps. (B) Dendrogram depicting
the hierarchical clustering of the 50 molecules computed by the complete linkage methode using Tanimoto similarity and MACCS key finger-
prints (see Section Basis of the multi-fusion approach: generating multi-fusion similarity maps for details). The table at the bottom of the fig-
ure summarizes the information on the five major clusters (I, II, III, IV, and V) that contain four or more molecules with intermolecular
similarities of ‡0.9. An additional cluster, VI, contains seven molecules with intermolecular similarities of ‡0.87. These clusters are also
labeled in the chemical-space plot in (A).
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Case 2 Here, the reference set is composed of a single cluster of
five very similar molecules taken from cluster I in Figure 2A. The
chemical space and corresponding MFS maps are illustrated in
Figure 4A,B, respectively. Four of the molecules in the test set
are labeled {a}, {b}, {c}, and {d} to distinguish them from the
remaining 41 molecules in the test set.

As expected, if the group of reference molecules lies in a cluster
with high intra-cluster similarity, then the max-fusion similarities
are approximately directly proportional to the corresponding mean-
fusion values. In the extreme case of a single reference molecule,
the max-fusion and mean-fusion values are equal (see Section Basis
of the multi-fusion approach: generating multi-fusion similarity
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Figure 3: (A) Depiction of the chemical space of the set of 50 molecules illustrated in Figure 2. (B) The corresponding max–mean multi-
fusion similarity map. Molecules in the reference set are colored red in both plots. The reference set is made up from clusters well separated
in chemical space but with high intra-cluster similarities (see text for details). Test-set molecules are colored blue except for a select few that
are colored yellow and comprise groups labeled by {a}, {b}, and {c}.
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Figure 4: (A) Depiction of the chemical space of the set of 50 molecules illustrated in Figure 2. (B) The corresponding max-mean multi-
fusion similarity map. The five reference-set molecules are colored red and form a single, tight cluster in chemical space with a mean similar-
ity of 0.95 and a standard deviation of €0.02. Test-set molecules are colored blue except for a select few that are colored yellow and labeled
by {a}, {b}, {c}, and {d}.
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maps). Thus, when a single reference molecule is used, as is the
case in typical similarity searching methods, nothing is gained using
a fusion rule, which is why in similarity fusion studies multiple sim-
ilarity methods are used (34,52,53).

Case 3 In this case, the reference set is made up of a diverse set
of five molecules scattered throughout the chemical space, as
depicted in Figure 5A. One molecule was selected from cluster
V and one from cluster VI in Figure 2; the other three molecules
were selected from isolated clusters containing one or two mole-
cules. This is in contrast to Case 1, where there are two tight, but

well-separated, clusters of reference molecules. As before, several
of the test-set molecules labeled {a}, {b}, {c}, and {d} are distin-
guished from the remaining test-set molecules. The corresponding
MFS map is given in Figure 5B. The self-reference values of the
five reference-set molecules are located at the bottom left side of
the MFS map. As the reference set is made up of diverse mole-
cules, low max-fusion and mean-fusion values are observed as
expected.

The positions of the four test-set molecules corresponding to
the singleton subsets {a}, {b}, {c}, and {d} in the MFS map in

A B

Figure 5: (A) Depiction of the chemical space of the set of 50 molecules illustrated in Figure 2. (B) The corresponding max–mean multi-
fusion similarity map. The five reference-set molecules are colored red and represent a diverse group of molecules with a mean similarity of
0.27 and a standard deviation of €0.1. Test-set molecules are colored blue except for a select few that are colored yellow and labeled by
{a}, {b}, {c}, and {d}.

A B

Figure 6: (A) Depiction of the chemical space of the test set of 50 molecules illustrated in Figure 2. (B) The corresponding MFS map for
the self-reference case. Selected molecules are colored yellow and labeled by {a}, {b}, {c}, and {d}.
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Figure 5B, can be interpreted as follows. The molecule in {a} is very
similar to a single reference molecule ðF max ¼ 0:94Þ, but is quite
far removed from the remaining reference-set molecules
ðF mean ¼ 0:33Þ. The three molecules in {b}, {c}, and {d} are
progressively less similar to the reference-set molecules as indi-
cated by their steadily decreasing max-fusion values
ðF max ¼ 0:91; 0:88; and0:80; respectivelyÞ and their nearly constant
mean-fusion values ðF mean � 0:42Þ. Interestingly, while the test-
set molecules in {a}, {b}, {c}, and {d} tend to be clustered in the
MFS map, they can be quite separated in chemical space, as illus-
trated in Figure 5A.

Case 4 This case illustrates self-referencing of the set of 50
molecules, which is accomplished by comparing the set with
itself using the same multi-fusion approach described above. The
procedure is carried out by comparing each molecule in the set
with every other molecule in the set, except itself. The chemical
space and corresponding MFS map are illustrated in Figure 6A,B,
respectively. To facilitate the discussion, selected groups of mole-
cules are labeled {a}, {b}, {c}, and {d} to distinguish them
from the bulk of the molecules in the set. Molecules in group
{a} come from cluster III in Figure 2A and have large max- and
mean-fusion values ðF max � 0:90; F mean � 0:45 Þ. Based on
the chemical space of the 50 molecules in the prototype set, it
is expected that molecules in group {b} in Figure 6A, which
come from cluster VI in Figure 2A, should also have large max-
fusion and mean-fusion values. This is, indeed, the case as illus-
trated in Figure 6B, although the mean-fusion values are less
than those in group {a}. On the other hand, molecules in group
{c}, which are not highly clustered are, nonetheless, grouped
together in small groups of approximately two molecules that
are relatively well separated from the remainder of the mole-
cules. This should give rise to large max-fusion but much smaller
mean-fusion values as can be seen in Figure 6B. The lone mole-
cule in group {d} is well separated from the remaining mole-
cules and, thus, should possess both low max- and mean-fusion
values, which is the case. As pointed out earlier, clusters of
compounds that are separated in the chemical space, such as
groups {a} and {b}, are not necessarily distinguishable in the
MFS map.

Although the discussion in this section has focused on the relation-
ship of distributions of molecules in chemical space and their rela-
tionship to the corresponding distributions of test-set molecules in

MFS maps, the inverse process is also useful. In such cases, it is
possible to infer the distribution of molecules in chemical space
from the corresponding distribution of test-set molecules in an MFS
map, especially when the distribution is simple as is the case
when the max-fusion and mean-fusion values tend to be highly
correlated.

The examples discussed above are not intended to be definitive but
rather as illustrations that should help clarify the way in which
chemical spaces can be mapped onto lower-dimension spaces that,
nonetheless, are capable of capturing a number of the salient fea-
tures of the corresponding chemical spaces. However, it must be
borne in mind that lower-dimensional representations cannot, in
general, capture all of the information of higher-dimensional spaces.
Nevertheless, in many instances they can faithfully capture relation-
ships that may be obscured in other, higher-dimensional representa-
tions, especially when the higher-dimensional representations are
portrayed in two and three dimensions.

Overview of compound databases used
in this work

In the present study, four compound collections ⁄ libraries (DrugBank,
NCIDiv, CNS, and Kappa), with a range of sizes and diversities, are
characterized and compared using MFS maps. A summary is pre-
sented in Table 2 including the sizes and an assessment of the
mean similarity and standard deviation for each data set. Similarity
was computed using MACCS key fingerprints and the Tanimoto sim-
ilarity coefficient, as described in Section Basis of the multi-fusion
approach: generating multi-fusion similarity maps. DrugBank, NCIDiv,
and CNS data sets are the most diverse with a mean similarity of
approximately 0.3. Although all of the compounds in CNS database
are CNS active, the compounds are associated with a number of
different CNS targets. As expected, the Kappa data set, which is
more 'target oriented' has a slightly higher mean similarity of 0.6.

Figures 7 and 8 depict the distribution of molecular weight and
logP, respectively, of the compound databases considered in this
study. The overall distributions of molecular weight for the
DrugBank and NCIDiv databases are similar in shape, as depicted
in Figure 7, and possess medians of 325 and 300, respectively.
Notably, compounds with kappa activity show a tendency toward
increased molecular weight. With respect to logP the DrugBank and

Figure 7: Molecular weight
distributions for the four data sets
analyzed in this study. The medians
of the distributions are,
respectively, 325 (DrugBank); 300
(NCIDiv); 307 (CNS); and 471
(Kappa).
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NCIDiv data sets have similar distributions with medians of 2.5 and
2.4, respectively, as illustrated in Figure 8. The CNS and Kappa
data sets tend to be more hydrophobic, and thus, their logP distri-
butions have medians of 3.4 and 4.3, respectively.

The chemical space for the four compound data sets, depicted in
Figure 9, was determined as described for the 50-molecule proto-
type set in Subsection Prototype data set. The molecules in this
and all other chemical-space maps are represented as colored balls
of finite radius. Although this improves visualization, it does
obscure some of the important spatial relationships among the mol-
ecules in chemical space. The most significant effect is that it
makes the density of molecules appear much greater than it actu-
ally is, and thus, makes it difficult to discern some of the 'natural'
clustering present in almost all chemical spaces. Figure 10 presents
the same view of the chemical space illustrated in Figure 9, the
only difference being that the molecules are represented as colored
points rather than balls. Although the latter figure provides a more
accurate depiction of the sparse and clustered distribution of mole-
cules typically seen in chemical spaces, it is generally not used
here because it can be difficult too 'see' some of the molecules.
Thus, even though the colored ball representation is used
throughout this paper, it is important to realize that chemical space
is typically quite sparse and tends to be populated with many small
clusters of molecules.

Results and Discussion

General overview
The following subsections will cover comparison of compound col-
lections, compound selection and acquisition, ligand-based virtual
screening, and computationally based applications of MFS. As in
the current work emphasis is placed on the visual characterization
and comparison of actual compound libraries and collections, the
dynamic visualization capabilities of the Spotfire� programe are
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Figure 8: LogP distributions for the four data sets analyzed in
this study. The medians of the distributions are, respectively, 2.5
(DrugBank); 2.4 (NCIDiv); 3.4 (CNS); and 4.3 (Kappa).

Figure 9: Depiction of the chemical spaces of the databases considered in this study: DrugBank, NCIDiv, CNS, and Kappa. The four insets
shown below depict the chemical spaces covered by each of the individual databases.
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quite useful in the analysis. This is not to say that the analysis can-
not be carried out effectively without the use of Spotfire�, only

that it is facilitated by the use of such dynamic display capabilities.
Any program with similar capabilities will be quite suitable for car-
rying out the analysis described here. Moreover, programs without
such dynamic display capabilities can still be used, but the analysis
is considerably more cumbersome.

Three-dimensional representations of chemical space are ubiquitous
in cheminformatics and they can provide a considerable amount of
useful qualitative information regarding the nature of large or small
sets of compounds, which includes NN relationships, compound
clustering, and molecular diversity. However, the magnitude of units
of measure associated with each of the co-ordinate axes are diffi-
cult to relate to notions of molecular similarity, and thus, the rela-
tionship between the apparent proximity of compounds in a
chemical space and their molecular similarity can be difficult to
ascertain visually. In contrast, the max-fusion and mean-fusion simi-
larity values are given explicitly on the MFS maps (vide infra). As
will be seen in the sequel, MFS maps provide another window into
chemical space that gives rise to powerful synergies when used in
conjunction with traditional 3D maps of chemical space. This is
illustrated in Figure 11. Figure 11A shows the chemical space of
two test sets of compounds derived from combinatorial libraries,
{a} and {b}, colored blue and yellow, respectively, each with 100
molecules. The reference set, colored red, is the set of CNS-active

Figure 10: A more realistic depiction of the density of the
chemical space of the four data sets considered in this work: Drug-
Bank (yellow); NCIDiv (green); CNS (cyan); and Kappa (red).
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compounds. From Figure 11A, it appears that the molecules in {a}
generally lie further from those of the reference set than do the
molecules of {b}. This relationship holds true even in the orthogo-
nal view as illustrated in Figure 11A¢. Figure 11B, however, tells a
different story. From the discussions in Sections Basis of the multi-
fusion approach: generating multi-fusion similarity maps and 2.2, it
follows that a significant majority of the molecules in {a} lie closer
to the molecules in the CNS reference set than do those of {b}, as
they possess both larger max-fusion and mean-fusion similarities.
Thus, it is clear from this example that visual analysis of chemical
spaces alone can lead to incorrect inferences regarding the nature
of the chemical space under consideration. Importantly, as will be
seen in the following examples, it is the synergies produced by
combining the information in the chemical-space and MFS maps
that yields the most significant insights.

Visualization methods obviously have limitations, especially when
dealing with large collections of compounds. As discussed in Sec-
tion Computationally based applications of the multi-fusion similar-
ity method, the present approach can also be applied in a purely
computational manner, using well-developed multi-criterion deci-
sion-making (MCDM) methods based on multi-objective optimization
techniques. These methods have been applied in a wide variety of

business applications (54) as well as in a number of combinatorial
library design applications (55–58).

Comparing compound collections
Two examples are presented in this section that illustrate how the
MFS approach can be applied in comparing compound collections.
The examples are based on the four compound collections ⁄ libraries
described in Section Overview of compound databases used in this
work – DrugBank, NCIDiv, CNS, and Kappa. The first example
involves a comparative study of DrugBank and NCIDiv. Figure 12
depicts four MFS maps: the reference sets are designated along
the top and the test sets along the left-hand side of the figure;
DrugBank molecules are colored yellow and NCIDiv molecules are
colored red; the two maps along the main diagonal are self-referen-
tial. Identical molecules have been removed in self-reference maps
so that the only molecules with max-fusion similarity values of unity
are either stereoisomers or non-identical molecules that are not
resolved by the MACCS key fingerprints. In the MFS map in the
upper right corner, NCIDiv is the reference set and DrugBank the
test set, while the opposite is true for the MFS map in the lower
left corner of the figure. In contrast to the self-reference case, mol-
ecules with max-fusion similarity values of unity located along the

Figure 12: Multi-fusion similarity maps comparing the DrugBank and NCIDiv compound collections, colored yellow and red, respectively.
The two plots along the principal diagonal (upper left to lower right in the figure) correspond to self-referencing MFS maps of the two com-
pound collections.
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top of each of the off-diagonal maps may be identical, indicating
that the same molecule is present in each of the data sets. All of
the molecules in the maps shown in the figure lie well above the
line that represents equality between max- and mean-fusion similar-
ity values (see Figure 1). As discussed in Section Interpreting multi-
fusion similarity maps, such cases indicate the presence of tight
clustering within the reference set, a situation that is not expected
in DrugBank and NCIDiv compound collections, especially in the lat-
ter case. The top two maps in Figure 12 indicate that some of the
molecules in DrugBank lie somewhat removed from the bulk of
DrugBank molecules regardless of whether DrugBank is referenced
to itself or to the NCIDiv collection. That this is, indeed, the case
can be seen by considering the chemical space depicted in Figure 9.
By comparison, the NCIDiv data set appears to fill chemical space
in a more uniform manner as evidenced by the more compact distri-
butions shown in the bottom maps of Figure 12. Nevertheless, it
does appear that DrugBank occupies some regions of chemical
space not occupied by NCIDiv. Thus, as will be shown in Section
Compound selection and acquisition, molecules from DrugBank
could be used to augment the NCIDiv data set in a way that
increases its coverage of chemical space and, hence, its diversity.

The second example considers the relationship of a given test set
– DrugBank – to two small, reasonably focused libraries – Kappa

and CNS – taken as reference sets. Figure 13 depicts the chemical
space and MFS maps for the Kappa ⁄ DrugBank case. Figure 13A,B
shows two, orthogonal chemical-space views, where molecules in
the Kappa reference set are colored red and those in the DrugBank
test set are colored yellow. The compounds colored blue and
labeled {a}, {b}, and {c} represent specific subsets of test mole-
cules. It is clear from the chemical-space maps that each of the
subsets lies in different regions of chemical space with respect to
the Kappa reference set. The corresponding MFS plot is given in
Figure 13C. The subsets of test set molecules colored blue are evi-
dent in this figure. The molecules in {a} possess the largest max-
and mean-fusion similarity values indicating that they lie close to a
large cluster of molecules in the Kappa reference set. In contrast, the
molecules in {b} possess comparable max-fusion similarity values to
those in {a} but possess smaller mean-fusion values indicating, as
is clear from Figure 13A,B, that they lie within a chemical-space
region of the Kappa reference set that is less clustered than the
molecules in {a}. The molecules in {c} have the lowest max- and
mean-fusion similarity values of any of the molecules in the test
set indicating that they are far removed from any of the reference
set molecules. The remainder of the molecules in the test set
shows an approximately linear relationship indicating that the
Kappa reference set molecules mostly lay in a single, large cluster
in chemical space, as observed in the figures.

A

C

B

Figure 13: Comparison of 1055 test-set molecules from DrugBank, colored yellow, to the 196 reference-set molecules from Kappa, col-
ored red. (A and B) Correspond to two orthogonal views of the chemical space. (C) Depicts the corresponding MFS map, where reference set
molecules have been omitted. As can be seen in (A, B, and C) DrugBank test-set molecules in group {a} lie very close to several Kappa refer-
ence-set molecules, test-set compounds in group {b} lie close to fewer reference-set compounds, and test-set molecules in {c} are removed
from essentially all of the molecules in the reference set.
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In static figures such as the maps depicted in Figure 13, it is diffi-
cult to gain a sense of the power of Spotfire� to dramatically
assist the process of visual exploratory data analysis (EDA). For
example, by selecting the molecules colored blue lying within the
three ellipses in Figure 13C, their positions are immediately identi-
fied in the chemical-space maps given in Figure 13A,B. This process
is further facilitated by the fact all three maps appear on the same
screen simultaneously. The process can, of course, also be reversed:
molecules selected in the chemical-space representation are imme-
diately identified in the MFS plot. The interplay between the chemi-
cal-space and MFS representations is facilitated by the dynamic
display capabilities of Spotfire� that significantly enhance visual
EDA. In addition, once molecules have been identified in any plot,
it is easy to retrieve associated information including, for example,
their structures and physico-chemical properties. The input data
may contain SMILES strings, CAS numbers, names, ID numbers, etc.
The automatic display of names using Spotfire is illustrated by the
table in Figure 14.

The third example in this section deals with the CNS and DrugBank
compound collections. The chemical space and MFS maps are given
in Figure 14A,B, respectively. Molecules in the CNS reference set
are colored red in Figure 14A; DrugBank test-set molecules are

colored yellow in Figure 14A,B. The blue test-set molecules, labeled
{a}, {b}, {c}, and {d}, correspond to ethylthioperazine, tranylcypro-
mine, valproic acid, and calcium chloride, respectively, as shown in
the table. The four molecules were selected from Figure 14B based
on their widely different positions in the MFS plot. While molecules
{a} and {b} both have high max-fusion similarities, indicating that
they are both close to at least one member of the CNS reference
set, {a} has a significantly greater mean-fusion similarity, which
indicates that it is closer to a cluster of reference molecules than
{b}. Molecules {c} and {d} are even more isolated, with {c} hav-
ing slightly more proximity to the CNS reference set. The group of
yellow test-set molecules lying across the top of Figure 14B at a
max-fusion similarity value of 1.00 is made up either of molecules
structurally identical to molecules in the CNS reference set or, due
to the limitations of the MACCS key fingerprint representation,
appear to be made up of molecules identical to CNS reference-set
molecules. There are 59 DrugBank molecules with max-fusion simi-
larities of unity, but just one is a stereoisomer of a CNS drug (zopi-
clone – eszopiclone); 58 molecules are identical to CNS-active
molecules.

From the above discussion and based on the way they were gener-
ated, it is not unexpected that the Kappa and CNS reference sets
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Figure 14: Comparison of 1055 test-set molecules from DrugBank, colored yellow, to the 77 reference-set of CNS-active molecules in the
CNS database, colored red. (A) Depicts the chemical space and (B) the corresponding MFS map. The reference set has been omitted from the
MFS map. Selected DrugBank test-set molecules denoted by {a}, {b}, {c}, and {d}, colored blue correspond to ethylthioperazine, tranylcypro-
mine, valproic acid, and calcium chloride, respectively.
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should possess somewhat different chemical-space characteristics:
the Kappa reference set contains molecules that are active against
a single target, namely the j opioid receptor. The CNS reference
set, on the other hand, contains molecules that are active against
one or more of a variety of CNS targets (see Section Overview of
compound databases used in this work for additional discussion).
Thus, the CNS reference set should be and is more diverse than
the Kappa reference set. This is also clear from the 3D chemical-
space maps in Figures 13A and 14A, where the Kappa and CNS-
active molecules are colored red.

Figure 15 shows a cross-comparison of the DrugBank and NCIDiv
test sets with respect to the same Kappa and CNS reference sets.
The data in Figure 15A,B was presented earlier in Figures 13C and
14B, respectively, and is included here to facilitate comparison with
the related data on the NCIDiv test set. Figure 15A,C provides a
comparison of the DrugBank and NCIDiv test sets with respect to
the Kappa reference set; Figure 15B,D provides the corresponding
test set comparison with respect to the CNS reference set. In the
former, it is clear that most of the molecules in both test sets bear
a similar relationship to the molecules of the Kappa reference set.
However, the upper right-hand corner of the DrugBank test set is
dramatically different from that of NCIDiv test set (compare Fig-
ure 15A,C). This indicates that DrugBank contains a number of mol-
ecules that are quite similar to those in the Kappa reference set,

while the NCIDiv test set does not. This result is not surprising
given the way in which the different libraries were constructed
(vide supra).

In the latter, as illustrated in Figure 15B,D, the distribution of
points is more spread out in both cases. This is entirely under-
standable since, as noted earlier, the CNS reference set is much
more diverse than the Kappa reference set. In addition, there
are a significant number of identical or very similar molecules in
DrugBank compared to the NCIDiv set with respect to the CNS
reference set. Again, this is not entirely surprising as DrugBank
contains some drug molecules with CNS activity that would likely
be identical or highly similar to the set of CNS active molecules
in the reference set.

Compound selection and acquisition
High-throughput screening (HTS) methods play an important role in
modern drug-discovery research. To be effective, these methods
require access to large, diverse compound collections. This raises
two important issues. The first is related to the optimal selection
of diverse subsets for screening (59) from a large compound collec-
tion ('dissimilarity sets'), and the second is related to expanding the
overall size and diversity of an existing compound collection (19).
In a general sense, both problems are very similar. In compound
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Figure 15: Max–mean MFS maps comparing the DrugBank and NCIDiv test sets to Kappa and CNS reference sets.

Medina-Franco et al.

406 Chem Biol Drug Des 2007; 70: 393–412



selection, a diverse subset is obtained by selecting compounds from
a given compound collection. During the process, compounds are
added to the growing dissimilarity set, which is initially a null set,
in a manner that maintains, in some optimal way, the overall diver-
sity of the growing set. In compound purchasing, the process is
basically the same except that compounds are selected from a ven-
dor collection and are added to an existing compound collection, in
a manner that maintains, in some optimal way, overall diversity.

Most of the procedures that are applied in either case are designed
to select compounds that increase the overall diversity of the nas-
cent set. For a variety of reasons, selecting compounds that are lar-
gely isolated from the other compounds within a set (i.e.
'singletons') can have potentially undesirable side-effects. Undoubt-
edly, there are many ways to address this problem. As seen in the
following example based on compound acquisition, the MFS
approach may provide an additional means for dealing with this
important issue. In this example, NCIDiv is taken as the reference
set and DrugBank the test set, but the reverse could also have

been done. Figure 16A,B shows two orthogonal views of the under-
lying chemical space. Molecules in the NCIDiv reference set are
colored red and those in the DrugBank test set are colored yellow.
The molecules colored blue are selected from DrugBank and occupy
four different subsets labeled {a}, {b}, {c}, and {d} that cover dif-
ferent regions of chemical space. As seen from the chemical-space
representations in Figure 16A,B, the molecules in {a} are clearly
dissimilar from the remainder of the molecules in either DrugBank
or NCIDiv. Not surprisingly they are also found in the lower-left cor-
ner of Figure 16C, isolated from the remainder of the DrugBank
test-set molecules. Adding molecules from this set to the NCIDiv
reference set will certainly increase its diversity. In contrast, the
DrugBank molecules in {c} are minimally dissimilar from molecules
in the NCIDiv reference set and, as such, they are located in the
upper right-hand corner of the MFS plot in Figure 16C. In this case,
adding these molecules to the NCIDiv reference set will not
increase the diversity of the reference set. Analysis of subsets {b}
and {d} is not as straightforward. It is not clear from the two
chemical-space representations depicted in Figure 16A,B which
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Figure 16: Comparison of the 1055 test-set molecules from DrugBank, colored yellow, to the 1990 test-set molecules from NCIDiv,
colored red. (A and B) Depict two orthogonal views of the chemical space, and (C) depicts the corresponding MFS map. Four subsets of
DrugBank test-set molecules, colored blue, are indicated by {a}, {b}, {c}, and {d}.
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molecules should be selected next to increase the diversity of the
reference set. It becomes much clearer if one considers Figure 16C.
In this case, subset {b} would be the best choice. The location of
these molecules with respect to chemical space, however, is not
straightforward. The last subset, {d}, represents the most subtle
case. Molecules in this subset cannot be spotted easily, if at all,
using chemical-space representations alone. From Figure 16C it is
seen that the molecules in {d} have high max-fusion similarities
with respect to the NCIDiv reference set. However, they also have
relatively small mean-fusion similarities. This indicates that the mol-
ecules in {d} lie in a relatively sparse region of the reference
space. Thus, it may be desirable to choose molecules from this set
even though they have high max-fusion similarities because their
selection will increase the population in a sparse region of chemi-
cal space. As noted earlier, it is desirable that the chemical space
of a given compound collection not possess too many sparse
regions populated with singletons or doubletons.

Admittedly, the graphical approach has limitations when the com-
pound collections become large, a situation that is likely to occur in
many cases of compound selection and acquisition. However, as is
discussed in Section Computationally based applications of the
multi-fusion similarity method, computational implementation of the
strategies described here is possible and is the subject of on-going
research in our group.

Ligand-based virtual screening
Ligand-based virtual screening has become an important part of the
drug-discovery process. As discussed in the Introduction, numerous
methods designed to improve the virtual screening process have
been developed. The Willett laboratory at the University of Shef-
field, in particular, has developed a number of improved virtual
screening procedures based on data-fusion methods originally
developed for a variety of engineering and data retrieval applica-
tions (38,39). In the area of compound retrieval, one of the most
successful has been the group fusion method, where it has been
shown that max-fusion similarity scores are quite effective in identi-
fying known active compounds (35,37). In contrast, the multi-fusion
approach proposed here uses both max-fusion and mean-fusion sim-
ilarity values to identify potentially active of compounds. This raises
the question as to whether the information gained by including two
sets of fused similarity values provides any additional benefit. That
this may, in fact, be the case follows from the supposition, dis-
cussed in Section Interpreting multi-fusion similarity maps, that mol-
ecules in close proximity to groups of actives have a greater
likelihood of also being active than molecules in close proximity
only to singleton actives. As noted earlier, the region surrounding a
singleton active may be rich with actives, but whether this is true
cannot be ascertained from the existing data alone and therefore
cannot be used as a basis for inference.

Figure 17 provides an illustrative example, where the Kappa actives
are taken as the reference set and DrugBank is taken as the test
set. Figure 17A depicts the chemical space – Kappa reference set
molecules are colored red and DrugBank test set molecules are col-
ored yellow. As is clear from the figure, the Kappa reference set
occupies a reasonably localized region of chemical space.

Molecules colored blue are test set molecules with high max-fusion
and high mean-fusion similarity values; they also lie within the box
at the upper right-hand corner of the MFS plot in Figure 17B. As
indicated in the figure, molecules within the box are all known
opioid compounds.

If only max-fusion similarity is used, as in the group fusion
approach, all of the molecules in the DrugBank test set will be pro-
jected onto the Kappa (Max) axis. This ensures that all of the mole-
cules with high max-fusion similarities will lie at the top of a list
ordered by max-fusion similarity values. However, if mean-fusion
similarity is used, molecules in the test set will be projected onto
the abscissa. As molecules in the test set located near actives on
the fringe of the Kappa reference set possess mean-fusion similar-
ity values that tend to be less than those test-set molecules
located in the center of the Kappa-active region, their positions in
Figure 17B will tend to move toward the left of the figure. When
the 'molecular points' are projected onto the mean-fusion similarity
axis the ordering of the test set molecules will differ from that
obtained using max-fusion similarity. Thus, molecules located at the
top of the 'max-fusion' list will tend to move downwards in the
'mean-fusion' list, leading to a decrease in rank correlation. When
such a case occurs, more molecules will have to be sampled to
ensure that all of the molecules with high max-fusion similarity will
also be included in the mean-fusion similarity list. This provides an
explanation for the observation that max-fusion similarity generally
outperforms mean-fusion similarity as a means for effectively identi-
fying 'unknown' active compounds in ligand-based virtual screening
applications (35,37).

As discussed in Section Interpreting multi-fusion similarity maps
for Case 2, when the reference set of active molecules is
grouped into a single, reasonably tight cluster, max-fusion and
mean-fusion similarity values are approximately related by a con-
stant. In such cases, either fusion measure would yield the same
results. However, as the diversity of the active (reference) set
increases the data points will tend to spread out along the
mean-fusion axis, even when there is a degree of clustering in
the active set. In this case, the max-fusion approach would be
expected to yield better results than mean-fusion (vide supra).
Although this is not proof, it does provide a plausible 'mechanis-
tic' explanation for the observations made by the Willett group,
which are based on comprehensive studies of ligand-based vir-
tual screening of the group fusion procedure (35,37).

An additional aspect of the multi-fusion approach that is not
exploited in this section is the ability of the mean-fusion similar-
ity values to further 'spread out' the subset of molecules with
high max-fusion similarity values. This provides an additional cri-
terion for identifying potential active molecules since, as dis-
cussed in Section Basis of the multi-fusion approach: generating
multi-fusion similarity maps and illustrated in Figure 3, molecules
with high max-fusion and high mean-fusion similarity values tend
to be located in regions containing multiple actives, and thus,
are more likely to also be active than molecules located in
regions of high max-fusion but low mean-fusion similarity (vide
supra). This additional degree of resolution can be of use in
cases where there are restrictions, for whatever reason, on the
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number of compounds that can be screened in subsequent itera-
tions of a screening campaign. This is not the case in Fig-
ure 17B, which shows a relatively modest spread (approximately
0.2 'similarity units', see inset in Figure 17) along the mean-
fusion similarity axis. In fact, all of the opioid compounds shown
in the figure could have been identified without the need to
consider the mean-fusion similarity values in any way.

Computationally based applications of the
multi-fusion similarity method
Because the current approach emphasizes data visualization it is
not entirely appropriate for drawing detailed conclusions from very
large compound collections (1,60) as may be encountered, for exam-
ple, in typical compound selection and ligand-based applications.
Fortunately, some of the computational methods developed for
MCDM are also applicable to this problem (54). In particular, a
number of methods based on evolutionary algorithms have been
developed for tackling the multi-objective optimization problem (61).
Applications of multi-objective optimization in combinatorial chemis-
try for the design of diverse compound libraries with optimum phys-
ico-chemical and biopharmaceutical properties have also been
reported (55–58).

In the current approach, Pareto optimal solutions for two objective
functions based on max-fusion and mean-fusion similarity are deter-
mined. This is accomplished by sequentially determining the Pareto
optimal subsets of non-dominated solutions. While the non-domi-
nated subsets are ordered with respect to each other, the mole-
cules within each non-dominated subset are not. This results in a
coarse-grained ordering from the best subset of non-dominated
solutions to worst subset of non-dominated solutions. A general
description of this approach is clearly presented in the excellent
book by Deb (61), which should be consulted for details. The graph-
ical representations described here can then be used to view the
results, which will provide an intuitive picture of the solutions
obtained from the computations. Work on the computational
aspects of the multi-fusion-based similarity is on-going in our labo-
ratories, and the results will be presented in future publications.

Conclusions

The current work describes a novel method for graphically depicting
information related to the chemical space properties of compound
collections and libraries. The method is based on the use of two-
dimensional MFS maps generated from fusion-based molecular

A B 
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Figure 17: (A) Depicts the chemical space and (B) the corresponding MFS map for the 1055 test-set molecules from DrugBank, colored
yellow, and the 77 reference-set molecules from Kappa. Selected test-set molecules, colored blue, lie within the box in the upper right-hand
corner of the MFS map in (B). The inset located below it provides a more detailed designation for the 12 blue, test-set compounds.

Fusion Similarity Analysis of Compound Databases

Chem Biol Drug Des 2007; 70: 393–412 409



similarities. Each of the points in a map corresponds to a test-set
molecule whose position is determined by the value of its mean-
fusion similarity, which lies along the abscissa, and its max-fusion
similarity, which lies along the ordinate of the map. Max-fusion rep-
resents the largest computed similarity value of a test-set molecule
with respect to any of the molecules within the reference set, while
mean-fusion is the average of the computed similarity values of the
test-set molecule with respect to all of the reference-set molecules.
Because, as seen in eqn 5, max-fusion similarity values are always
greater than or equal to their corresponding mean-fusion similarities
all of the points in an MFS map lie in the upper triangular region
illustrated in Figure 1. Reference set molecules need not correspond
only to active molecules; rather, they can represent any set of mole-
cules that is compared to a given test set of molecules. For example,
reference sets can be made up from molecules of the test-set itself
(the self-referencing case), from molecules of a small library or large
compound collection, or from molecules that are active in a given
assay or group of assays. Examples, discussing each of these possi-
bilities were presented in Section Results and Discussion. An impor-
tant feature of MFS maps is that they provide information on the
chemical space of each test-set molecule induced by the set of ref-
erence molecules, but information on the reference-set molecules
themselves is not expressed explicitly in an MFS map.

The emphasis in this work is on the use of multiple fusion-based
similarity measures as a basis for representing high-dimensional
chemical-space information on compound libraries and collections in
graphical form using MFS maps. Several examples were presented
illustrating how this can be accomplished and how the graphical
representations obtained can be interpreted. It is also shown that
in a number of cases there is a synergistic relationship between
the two fusion-based similarities so that use of both together pro-
vides more information than use of either does separately.

While useful, purely graphical analysis of multiple fusion-based
data encounters significant difficulty as the size of the compound
libraries and collections being analyzed become very large. How-
ever, as discussed in Section Computationally based applications of
the multi-fusion similarity method, computational methods based on
multi-objective optimization methods employing evolutionary algo-
rithms are available for dealing with this issue, and this is an area
where we are directing our future research efforts. Although the
methodology described in this work is focused on applications to
small molecules, it can be applied to any sets of objects (e.g.
proteins) for which a similarity measure can be determined, compu-
tationally or otherwise, considerably extending the range of possible
applications that can be treated using this methodology.
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