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Abstract

Background: The interaction of the envelope glycoprotein of HIV-1 (gp120/gp41) with coreceptor molecules has
important implications for specific cellular targeting and pathogenesis. Experimental and theoretical evidences have
shown a role for gp41 in coreceptor tropism, although there is no consensus about the positions involved. Here we
analyze the association of physicochemical properties of gp41 amino acid residues with viral tropism (X4, R5, and
R5X4) using a large set of HIV-1 sequences. Under the assumption that conserved regions define the complex structural
features essential for protein function, we focused our search only on amino acids in the gp41 variable regions.

Methods: Gp41 amino acid sequences of 2823 HIV-1 strains from all clades with known coreceptor tropism were
retrieved from Los Alamos HIV Database. Consensus sequences were constructed for homologous sequences (those
obtained from the same patient and having the same tropism) in order to avoid bias due to sequence
overrepresentation, and the variability (entropy) per site was determined. Comparisons of hydropathy index (HI) and
charge (Q) of amino acid residues at highly variable positions between coreceptor groups were performed using two
non-parametrical tests and Benjamini-Hochberg correction. Pearson’s correlation analysis was performed to
determine covariance of HI and Q values.

Results: Calculation of variability per site rendered 58 highly variable amino acid positions. Of these, statistical
analysis rendered significantly different HI or Q only for the R5 vs. R5X4 comparison at twelve positions: 535, 602,
619, 636, 640, 641, 658, 662, 667, 723, 756 and 841. The largest differences in particular amino acid frequencies
between coreceptor groups were found at 619, 636, 640, 641, 662, 723 and 756. A hydrophobic tendency of
residues 619, 640, 641, 723 and 756, along with a hydrophilic/charged tendency at residues 636 and 662 was
observed in R5X4 with respect to R5 sequences. HI of position 640 covariated with that of 602, 619, 636, 662, and 756.

Conclusions: Variability and significant correlations of physicochemical properties with viral phenotype suggest that
substitutions at residues in the loop (602 and 619), the HR2 (636, 640, 641, 662), and the C-terminal tail (723, 756) of
gp41 may contribute to phenotype of R5X4 strains.
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Background
Important features of the HIV-1 induced disease are de-
termined by the interaction of three main classes of vi-
ruses with different subsets of CD4+ cells, currently
designated as R5, X4 and R5X4 viruses depending on
the coreceptor they use to enter cells (CCR5, CXCR4, or
both, respectively). CCR5 is expressed mainly by macro-
phages and the activated/memory T subset, whereas
CXCR4 is predominantly expressed by the naïve, but
also the memory, subsets of CD4+ T-lymphocytes and
by CD4+ T-cell lines. R5 viruses are responsible for
transmission and persist through the whole course of
the disease in most of patients. The appearance of R5X4
and X4 viruses in blood associates with the onset of
AIDS [1].
Entry of the HIV-1 genome into target cells depends

on trimmeric complexes of the viral envelope glycopro-
tein (Env) heterodimer, which is composed of a hyper-
variable surface subunit (gp120), and a more conserved,
though highly variable, transmembrane subunit (gp41)
[2]. CD4 binding to gp120 induces the exposure/forma-
tion of the binding site for the coreceptor [3]. The
gp120-CD4-coreceptor interaction then allows the ex-
tension of gp41 and the insertion of the fusion peptide
into the target membrane. Current models indicate that
packing of three gp41 C-terminal helices into the
grooves of a coiled coil formed by the N-terminal helices
forms a structure known as the six-helix bundle, enfor-
cing virus-cell membrane fusion [4, 5].
Determinants of HIV-1 coreceptor tropism have been

identified mainly in the hypervariable gp120 V3 loop,
where a high positive net charge associates with X4
tropism [6, 7]. V1, V2 and V5 loops modulates the V3 ef-
fects [8–12]. In addition, experimental evidence of the
participation of gp41 in coreceptor recognition has been
provided [13–16]. Gp41 contains approximately 346
amino acids and is composed of an ectodomain, a mem-
brane spanning domain, and a long C-terminal tail
(CTT). The ectodomain is organized in an N-terminal
fusion peptide, two helical regions known as HR1 and
HR2, a central loop, and the membrane proximal exter-
nal region (MPER). In the ectodomain, HR2 concen-
trates the highest variation rate [17], whereas the C-
terminal tail display the higher average diversity in the
protein [2]. Theoretical studies have shown the statistical
association of gp41 with coreceptor tropism although
there is no a consensus about the putative sites impli-
cated [18–21], and congruency with experimental inves-
tigations of coreceptor associated mutations [13, 14] is
not clear. Given the high variability and adaptive nature
of gp41, discordances may be caused by differences in
the databases used, as well as to distinct analytical ap-
proaches. Thus, while it seems clear that different gp41
domains participate in determination of virus phenotype,

the specific changes involved may develop in a complex,
context-dependent manner, similarly to the different
mutational pathways observed in studies of the corre-
lates of the gp120 sequence with coreceptor tropism
[10] or that obtained for resistance to maraviroc of R5-
tropic viruses [22].
Unlike other studies, we focused our analysis on the

relationship of the hydropathy index and charge of
amino acid positions between coreceptor groups in
order to determine if general physicochemical properties
of gp41 residues correlate with different virus pheno-
types. In addition, we focused on highly variable amino
acid positions of gp41 since conserved positions are
most probably engaged in maintaining the highly strin-
gent structural properties required for membrane fusion.
With this purpose, we retrieved amino acid sequences of
a set of 2823 HIV-1 strains from all clades with known
coreceptor tropism from Los Alamos HIV Database.
Consensus sequences were constructed for homologous
sequences (those obtained from the same patient and
having the same tropism) in order to avoid bias due to
sequence overrepresentation. Then, the variability (en-
tropy) per site was determined and amino acid positions
with high variability scores or with large differences in
variability between coreceptor groups were selected.
Next, we performed a statistical analysis for the associ-
ation of the viral tropism (X4, R5 and R5X4) with the
hydropathy index (HI) and charge (Q) of amino acid res-
idues at those positions. Twelve positions were found
linked to coreceptor usage in this analysis. We suggest
that some of the most gp41 variable residues are in-
volved in the coreceptor recognition process.

Results
Variability of gp41
The statistical association between coreceptor tropism
and hydropathy index (HI) or charge (Q) of variable
amino acids was analyzed for 2823 gp41 sequences from
individual viruses with known coreceptor tropism in-
cluded in Los Alamos Database at January 2014, consid-
ering all clades. After alignment and construction of
consensus for homologous sequences, a final number of
773 sequences was obtained as follows: 621 R5, 73 X4,
and 79 R5X4. Table 1 presents the percentage of consen-
sus sequences of strains with a given coreceptor tropism
in genetic subtypes.
The protein variability calculated by means of the

entropy (Sk) per site for the whole gp41 sequence is
presented in Fig. 1. The highest entropy peaks
concentrated at the ectodomain, particularly at posi-
tions 619–621 of the C-terminal end of the loop,
and 640, 641, and 644 in HR2. In the C-terminal
tail, regions with high variability were observed in
the putative minor ectodomain (ME) [23–25] and
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membrane spanning domain three (MSD3) [25, 26],
as well as in the lentivirus lytic peptide one (LLP-1).
Similar patterns of gp41 variability have been reported
before [2, 17].
We considered as highly variable those positions with the

highest entropy scores (Sk > 0.9). This criterion yielded 27
positions in the ectodomain and 31 in the transmembrane
domain and cytoplasmic tail. Thus, 58 variable positions
were considered for statistical analysis of correlation with
coreceptor usage (Fig. 1 and Additional file 1: Table S1).

Relationship of coreceptor usage with hydropathy index
and charge of highly variable amino acids
We tested the independence of HI distributions (Mann–
Whitney U test) and the association of the hydrophobic
(HI > 0) or hydrophilic (HI < 0) character (χ2 test) with
coreceptor usage in the R5 vs. X4, R5 vs. R5X4, and X4

vs. R5X4 comparisons. In order to correct for multiple
tests we employed the Benjamini-Hochberg procedure
by considering false discovery rates (QFD) of 0.05 and
0.1. With both criteria significant p values were obtained
only for the R5 vs. R5X4 comparison. Additional file 1:
Table S1 contains the average and standard deviation of
HI at each position in the R5, X4, and R5X4 groups, as
well as the p values obtained for comparisons between
them before correction for multiple tests. Table 2 shows
the summary of statistics of positions with significant p
values after Benjamini-Hochberg correction. Using a QFD

of 0.05, the test of HI-independence distribution (Mann–
Whitney U test) rendered ten significant amino acid posi-
tions. Three of these positions (619, 641 and 667) as well
as 602 also showed statistical linkage of hydrophilicity or
hydrophobicity (χ2) with coreceptor tropism. The same
tests were applied to the analysis of correlation of Q with
coreceptor usage. Additional file 2: Table S2 shows p
values obtained for all comparisons before correction for
multiple tests and Table 3 contains the summary of sig-
nificant position statistics after multiple test correction.
Statistical independence of Q distribution was found only
at position 636, whereas significant association of charged
or uncharged character with viral tropism was obtained
for this position and for 602 and 658. In total, twelve dif-
ferent positions rendered significant p values for HI or Q.
Figure 2 compares the mean hydropathy value of all

58 variable residues (listed in Additional file 1: Table S1)
among coreceptor groups. Red markers indicate
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Fig. 1 Entropy at each amino acid position (Sk) of HIV-1 gp41 calculated from the whole set of sequences. Residue numbers correspond to positions
in gp160 HXB2 strain. Residues statistically related to virus phenotype (Tables 2 and 3) are indicated with position number. FP, fusion peptide;
HR1, heptad repeat region 1; HR2, heptad repeat region 2; MPER, membrane proximal external region; MSD, membrane spanning domain; MSD2,
membrane spanning domain 2; MSD3, membrane spanning domain 3; ME, minor ectodomain; LLP-1, lentiviral lytic peptide 1; LLP-2, lentiviral lytic
peptide 2; LLP-3, lentiviral lytic peptide 3

Table 1 Percentage of R5, X4 and R5X4 strains in different
genetic subtypes

Subtypea R5 (621) X4 (73) R5X4 (79) Total

A (37) 78.4 8.1 13.5 100

B (270) 81.5 9.6 8.9 100

C (164) 87.2 7.9 4.9 100

D (52) 61.5 11.5 26.9 100

others (250) 78.8 10 11.2 100
aThe number of sequences in each subtype and each tropism group is indicated
in parenthesis
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positions that produced significant p values with a QFD

of 0.05 showed in Tables 2 and 3. According with statis-
tical analyses, the largest differences in HI were observed
for the R5X4-R5 comparison (Fig. 2a). Large increments
of hydrophobicity in R5X4 respective to R5 sequences

were observed at positions 619, 641, 667 and 841, and
moderated increments at 640, 723 and 756, whereas in-
creased hydrophilicity in R5X4 respective to R5 se-
quences was observed at positions 602, 636 and 662.
Position 658, which showed significantly different Q

Table 2 Summary of statistics of positions significant in the comparison between the hydropathy index of R4X4 and R5 sequences

Mann–Whitney U test

Rank HXB2 residue Positiona p (U-test)b p (QFD = .05)c p (QFD = .1)c Location

1 L 619 .00023 .00086 .0017 Loop-HR2

2 A 667 .00033 .0017 .0034 MPER

3 S 640 .00064 .0026 .0052 HR2

4 R 841 .0009 .0034 .0068 LLP-1

5 N 636 .0027 .0043 .0086 HR2

6 L 641 .0030 .0052 .0104 HR2

7 I 756 .0040 .0060 .0120 MSD3

8 M 535 .0061 .0069 .0138 Fusion peptide

9 E 662 .0067 .0078 .0156 MPER

10 T 723 .0075 .0086 .0172 Minor ectodomain

11 I 746 .0135 .0095 .0190 Minor ectodomain-MSD3

12 Q 658 .0164 .0103 .0206 HR2

χ2 test

Rank HXB2 residue Position p (X2)b p (QFD = .05)c p (QFD = .10)c

1 A 667 .00002 .00086 .0017 MPER

2 L 602 .00013 .0017 .0034 Loop

3 L 641 .00019 .0026 .0052 HR2

4 L 619 .00022 .0034 .0068 Loop-HR2

5 E 662 .0076 .0043 .0086 MPER

6 V 778 .0080 .0052 .0104 LLP-2
aResidue number is based on the sequence of HXB2 gp120
bBold characters indicate positions with significant p values using QFD = .05. Normal characters indicate aditional positions with significant p values using QFD = .1
cBenjamini-Hochberg critical p values

Table 3 Summary of results of statistical comparison between the charge of amino acid positions from R4X4 and R5 sequences

Mann–Whitney U test

Rank HXB2 residue Positiona p (U-test)b p (QFD = .05)c p (QFD = .10)c Location

1 N 636 .0002 .00086 .0017 HR2

χ2 test

Rank HXB2 residue Position p (X2)b p (QFD = .05)c p (QFD = .10)c

1 N 636 .00004 .00086 .0017 HR2

2 L 602 .00005 .0017 .0034 Loop

3 Q 658 .0010 .0026 .0052 HR2

4 N 809 .0050 .0034 .0068 LLP-3

5 A 667 .0055 .0043 .0086 MPER

6 R 841 .0078 .0052 .0104 LLP-1
aResidue number is based on the sequence of HXB2 gp120
bBold characters indicate positions with significant p values using QFD = .05. Normal characters indicate positions with significant p values using QFD = .1
cBenjamini-Hochberg critical p values
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Fig. 2 Mean hydropathy index differences (ΔHI) of all 58 variable positions included in Additional file 1: Table S1. (a) ΔHI between R5X5 and R5
sequences. Positions showing significant differences of HI (QFD = 0.05) between R5X4 and R5 viruses are indicated with red circles. Position 658,
which exhibited difference in charge only (Table 3) is indicated with a red square. Positions with the largest differences in amino acid frequencies
between coreceptor groups (see Fig. 3) are indicated with position number. (b) ΔHI between R5X5 and X4 sequences. (c) ΔHI between X4 and R5
sequences. Positive or negative differences in HI imply a hydrophobic or hydrophilic tendency, respectively, for R5X4 (a, b) or X4 (c) sequences.
Note that positions that were significant in the R5X4-R5 comparison (a) where not significant for the comparisons shown in (b) and (c), and are
presented to illustrate the diminution of the hydrophobic or hydrophilic tendency of the respective residues (white circles and squares)
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between R5X4 and R5 sequences, is indicated with a red
square. A similar pattern, although not significant, was
observed in R5X4 respective to X4 sequences (Fig. 2b)
and only minor differences were observed in X4 with re-
spect to R5 sequences (Fig. 2c).
Figure 3 shows a survey of the frequency distribution

of particular amino acids at these sites. The major dif-
ferences between coreceptor groups were at positions
619, 636, 640, and 641. The content of hydrophobic
residues at positions 619, 640 and 641 was between 38

and 52 % greater in R5X4 than in R5 sequences,
whereas the content of charged residues at position 636
was 40 % greater in R5X4 sequences. Positions 535,
602, 658, 662, 667, 723, 756 and 841 exhibited differ-
ences between 18 and 34 % in the content of particular
residues.
In summary, taking into account the extent of differ-

ences in hydropathy and charge, as well as the frequency
distribution of amino acids, a tendency to a hydrophobic
character at positions 619, 640, 641, 723 and 756, and to
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Fig. 3 Amino acid distribution at positions statistically related to virus phenotype in the R5, X4 and R5X4 groups
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charged amino acids at position 636 and 662, were
found in R5X4 respective to R5 sequences.
In order to detect differences in HI or Q in other com-

parisons (R5X4 vs. X4 and R5 vs. X4), a statistical evalu-
ation was performed by broadening the criterion of false
discovery rate. Considering a value of QFD = .10, again
the R5 vs. R5X4 comparison was the only that provided
statistically relevant sites. In addition to positions ob-
tained using a QFD = .05, differences in HI were obtained
at positions 746 and 778, whereas different charge was
observed at 809 (Tables 2 and 3).

Correlation between sites
A covariation analysis was performed for positions that
were statistically different between coreceptor groups in
order to assess if HI or Q values change in a correlated
manner. Given the highly organized structure of gp41, it is
predictable that many positions should covariate signifi-
cantly, which is necessary to maintain the structure and
function of the protein. However, a higher correlation index
for a pair of residues in one tropism group respective to
others would be indicative of a complementary contribu-
tion to virus phenotype. Thus, the analysis was performed
separately on the R5, X4 and R5X4 groups. The covariance
analysis also provides information about the positive or
negative correlation between values, providing an assess-
ment, for example, of the tendency to hydrophobicity of a
pair of residues (positive correlation), or a tendency to
hydrophobicity of one residue along with a tendency to
hydrophilicity of another (negative correlation).
Table 4 contains Pearson’s correlation coefficients (r)

for hydrophaty index of pairs of positions in the R5, X4,
and R5X4 groups. As expected, most of residue pairs co-
variate significantly with moderate or high correlation co-
efficients. However, pairs 602–640, 602–723, 619–640,
636–640, 640–662, and 640–756 correlated with higher r’s
(>0.4) in the R5X4 group than in the R5 and X4 groups
(indicated with bold characters in the column R5X4 in
Table 4). Of these, a positive correlation was observed for
the 619–640 and 640–756 positions, in agreement with a
hydrophobic tendency observed for these residues in
R5X4 sequences (Fig. 2a). Instead, negative correlations
were observed for the 602–640, 602–723, 636–640 and
640–662 pairs in the R5X4 group, accordingly with the
opposite hydrophaty tendencies of these residues in this
group observed before (Fig. 2a). Noticeably, position 640
participated in five of six of these covariations, emphasiz-
ing the importance of the hydrophobic character of the
640 residue for the R5X4 phenotype.
Correlation with r > 0.4 was also observed for the pairs

636–723 and 641–723 in both R5 and X4 groups (indi-
cated with bold characters in the R5 and X4 columns in
Table 4), but not in the R5X4 group, indicating that R5 and
X4 sequences share hydropathy features at these positions.

Regarding charge, no correlations with r > 0.4 between
positions were observed (Additional file 3: Table S3).

Discussion
Our results indicate that the R5X4 phenotype associates
with a hydrophobic tendency of positions at the C-
terminal half of the loop (619) the HR2 (640, 641), the
so called minor ectodomain (723), and the putative
MSD3 (756), as well as with a hydrophilic/charged ten-
dency in a residue at the disulfide bridge region of the
loop (602), and the HR2 (636, 662). The location of the
nine positions belonging to the ectodomain is shown in
the structure of the six-helix bundle in Fig. 4. Since this
study is correlative, it does not necessarily implicates
that these residues establish contact with coreceptor
molecules, but only that hydrophobic or hydrophilic res-
idues at these positions are more frequently harbored by
R5X4 than R5 and X4 viruses. However, it can be specu-
lated that they may contribute to virus phenotype by
several mechanisms. Position 602 is the most variable
site in the disulfide bridge region of the loop (Figs. 1 and
4). It is known that hydrophobicity of the loop is import-
ant for the stability of the gp120-gp41 association [27],
so a hydrophilic residue at position 602 may favor gp120
shedding and fusion. Position 619 is part of the LEQ –
leucine-glutamate-glutamine in the HXB2 strain – highly
variable triplet located at the loop-HR2 boundary (Fig. 4).
To our knowledge, there are no experimental studies re-
garding the role of this position. However, a more con-
served fragment comprising nearby residues 579–613 of
the loop (which includes the 602 residue) and another
fragment containing the 619 amino acid, interact with and
perturb cellular and model membranes [28–30]. It has
been hypothesized that the loop may bind to and
destabilize the host cell membrane, as well as stabilize the
trimeric helical hairpin, then favoring the formation of the
fusion pore [28]. Thus, a hydrophobic 619 residue in
R5X4 strains may enhance the interaction of the loop with
membranes. On the other hand, since the loop is part of a
wide region composing the gp120-gp41 interface [27, 31],
it may influence the efficiency of gp120 shedding. It has
been demonstrated that gp120 shedding requires the pres-
ence of CXCR4 [5], although a similar analysis for CCR5
is still lacking.
HR2 amino acids 636, 640, and 641 may participate in

coreceptor recognition by interacting with the gp120
coreceptor binding site. The HR2-based peptide T-20 in-
teracts with peptides derived from the bridging sheet
[32], and can block the interaction of gp120-CD4 com-
plexes with the CXCR4 coreceptor through binding a re-
gion near the base of the gp120 V3 loop [33]. Recently,
Moseri and cols. showed that T-20 binds to the con-
served region 4 of R5 gp120 trough mostly hydrophobic
interactions [34]. On the other hand, the direct
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Table 4 Pearson’s correlation coefficients (r) for hydrophaty index in gp41 alignments of R5, X4, and R5X4 sequencesa

R5 X4 R5X4

Position 1 Position 2 r p r p r p

535 619 −0.18 5.7E-06 −0.38 5.5E-04 −0.31 4.3E-03

535 636 0.26 5.7E-11 0.32 3.2E-03 0.29 6.9E-03

535 641 −0.23 8.1E-09 −0.34 1.8E-03 −0.18 5.3E-02

535 662 0.15 7.7E-05 0.36 7.9E-04 0.11 1.8E-01

535 723 −0.29 2.7E-13 −0.47 2.0E-05 −0.27 9.6E-03

535 756 −0.26 8.8E-11 −0.39 2.7E-04 −0.25 1.6E-02

602 619 −0.20 3.3E-07 −0.16 8.3E-02 −0.14 9.4E-02

602 640 −0.22 2.4E-08 −0.15 1.1E-01 −0.44 5.9E-05

602 641 −0.17 7.4E-06 −0.11 1.7E-01 −0.16 8.1E-02

602 662 0.20 9.6E-07 0.20 4.5E-02 0.22 2.1E-02

602 723 −0.22 3.3E-08 −0.10 2.1E-01 −0.40 1.8E-04

602 756 −0.18 4.2E-06 −0.25 1.5E-02 −0.34 1.2E-03

619 636 −0.28 4.3E-12 −0.38 3.6E-04 −0.28 7.6E-03

619 640 0.20 2.6E-07 0.17 7.9E-02 0.47 2.6E-05

619 641 0.20 2.2E-07 0.24 2.0E-02 0.10 1.9E-01

619 658 0.16 2.9E-05 0.21 3.6E-02 0.16 8.2E-02

619 662 −0.45 2.0E-29 −0.51 1.4E-05 −0.54 6.4E-07

619 723 0.45 6.3E-29 0.44 1.1E-04 0.45 3.8E-05

619 756 0.41 2.2E-24 0.39 4.5E-04 0.45 2.1E-05

619 841 0.25 2.5E-10 −0.03 3.8E-01 0.36 6.4E-04

636 640 −0.24 4.0E-09 −0.20 3.8E-02 −0.58 2.3E-07

636 641 −0.35 6.7E-18 −0.19 5.1E-02 −0.30 3.6E-03

636 662 0.19 1.2E-06 0.28 1.0E-02 0.21 2.8E-02

636 723 −0.53 1.7E-37 −0.42 2.0E-04 −0.28 7.6E-03

636 756 −0.48 1.4E-35 −0.31 4.0E-03 −0.23 2.3E-02

640 641 0.28 1.7E-13 0.35 1.5E-03 0.35 1.2E-03

640 662 −0.21 4.3E-08 −0.31 3.9E-03 −0.48 1.4E-05

640 723 0.35 3.3E-18 0.35 1.1E-03 0.39 3.5E-04

640 756 0.29 1.5E-12 0.16 8.8E-02 0.45 1.9E-05

641 723 0.40 1.8E-23 0.52 7.0E-06 0.23 2.6E-02

641 756 0.36 6.4E-19 0.20 3.9E-02 0.16 7.3E-02

658 662 −0.18 2.5E-06 −0.26 1.1E-02 −0.13 1.2E-01

658 723 0.26 3.2E-10 0.09 2.5E-01 −0.16 7.2E-02

658 756 0.21 3.4E-07 0.08 2.4E-01 0.16 7.2E-02

662 723 −0.45 1.5E-29 −0.42 1.5E-04 −0.49 6.9E-06

662 756 −0.40 4.6E-24 −0.45 6.0E-05 −0.44 2.7E-05

662 841 −0.36 1.5E-19 −0.12 1.3E-01 −0.23 2.2E-02

723 756 0.71 1.5E-66 0.61 1.3E-07 0.67 1.5E-09

723 841 0.20 3.0E-07 0.03 4.3E-01 0.10 2.0E-01

756 841 0.24 1.5E-09 0.07 2.8E-01 0.19 4.9E-02
a Only correlations with a p-value less than .0001 for at least one coreceptor group are shown
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interaction of the gp41 ectodomain with the coreceptor
molecule has been suggested by the observation that T-
20 and the related T22 peptide, inhibited the binding to

CXCR4 of the anti-CXCR4 HIV-blocking antibody
12G5 [35]. CXCR4, but not CCR5, contains a highly
hydrophobic groove in the region located between the
second and third extracellular loops. Since the second
extracellular loop is critical for coreceptor function [36,
37], this region represents a putative site for interaction
with the hydrophobic residues of the gp41 ectodomain
of R5X4 viruses. Finally, it is possible that residues 619,
640 and 641 of R5X4 gp41 proteins strengthen the
interaction of this molecule with membrane lipids.
HR1 and HR2 peptides interact with membrane vesi-
cles and it has been proposed that they play an import-
ant role in the interaction of gp41 with the viral and
cellular membranes during the opening of the fusion
pore [38–42]. Current structural models indicate that
residues 636, 640, 641 are not part of the HR1-HR2
interface in the six-helix bundle [43], so they would be
exposed on this structure and available for membrane
interactions in late stages of the fusion process, con-
tributing to fusogenicity and pathogenicity of R5X4 vi-
ruses (Fig. 4).
Importantly, correlation analysis revealed that the hy-

dropathy index of pairs 602–640, 602–723, 619–640,
636–640, 640–662, and 640–756, covariate with higher
correlation coefficients in the R5X4 group than in the
R5 and X4 groups (Table 4), suggesting a complemen-
tary functionality of these residues for determination of
the R5X4 phenotype. The positive covariation of the
619–640 and 640–756 pairs suggests a joint hydrophobic
effect of these positions in R5X4 viruses for membrane
lipid interactions (Fig. 2). On the other hand, the nega-
tive covariation observed for positions with opposed hy-
dropathy tendencies (602–640, 602–723, 636–640 and
640–662) remarks the importance of the concurrence of
hydrophilicity at positions 602, 636 and 662 (Fig. 2) for
the R5X4 phenotype. In particular, the participation of
position 640 in five of six covariations and the exposed
position of this residue on the six-helix bundle structure
(Fig. 4), suggest an important role of this residue for the
R5X4 phenotype.
Residue 723 is part of a region in the C-terminal tail

that may be transiently exposed on the surface virus and
infected cells and is so called the minor ectodomain
[23–25], while position 756 locates in a region that may
constitute a third membrane spanning domain (MSD3)
during exposition of the minor ectodomain [25, 26]. A
hydrophobic residue at this position may favor the ex-
posure of the minor ectodomain, although with still un-
suspected consequences.
A less restrictive analysis (QFD = 0.1) rendered add-

itional positions located at different domains of gp41
and again, only for the R5X4 vs. R5 comparison. Thus,
statistical analysis suggests a role for gp41 in the R5X4
virus phenotype.

Fig. 4 Three-dimensional representation of the trimeric gp41 protein
ectodomain. Ribbon representation of the protein with the HR1 domain
(positions 531–591) in light blue and the HR2 (positions 624–681)
domain in blue. Positions relevant for the R5 or R5X4 tropism (see
Fig. 2) are shown in green. The image was obtained from a consensus
homology model generated with Prime software [49] from gp160
(Uniprot: Q70626, positions: 531–681) of HIV-1 group M subtype B
(isolate LW123), and using two templates (PDB ID's: 2X7R and 1IF3) [47,
48]. The coordinates of this structure are available in the Additional file
4: Figure S1 (Gp41 coordinates - Homology model)
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Our analysis of the relationship of the gp41 sequence
with virus phenotype did not yield differences between
the X4 and R5 groups. It is well known that V3 gp120
residues influence the macrophage-tropic R5 (M-R5)
and T-cell tropic (T-X4) viral phenotypes [44, 45], yet
the role of V3 as a major determinant of phenotype is
less clear in the case of dually tropic viruses [8]. Since
our analysis was performed independently of the gp120
sequence, it is likely that we only observed residues in-
fluencing the R5-R5X4 shift in gp41, whereas residues in
gp120 would be significant in determination of the R5
and X4 phenotypes.

Conclusions
R5 and R5X4 are the two main classes of viruses found
in the circulation of patients with HIV-1 infection. Our
analysis suggests that physicochemical properties of the
variable amino acid residues at positions 602, 619, 636,
640, 641, 662, 723 and 756 of gp41 may contribute to
enhanced virus-host membrane fusion of R5X4 viruses
respective to R5 viruses.

Methods
HIV-1 sequences
A total of 2823 gp41 amino acid sequences from all main
subtypes with defined coreceptor usage available in Los
Alamos HIV database (19) were downloaded as follows:
2346 R5, 197 X4 and 280 R5X4. Consensus were con-
structed for homologous sequences (i.e. those derived
from the same patient and having the same tropism), by
using the Consensus Maker software available in Los Ala-
mos HIV database website (19). As a result, a set of 773
sequences was obtained and classified according to core-
ceptor usage: 621 R5, 73 X4, and 79 R5X4. Table 1 pre-
sents the relative abundance of consensus sequences from
strains with a given coreceptor tropism in the main gen-
etic subtypes. Sequences from B and C clades were the
most abundant and belonged mainly to the R5 group (81.4
and 87.2 %, respectively). Recombinant subtypes were
grouped together in “others”. Sequences were aligned with
respect to the reference HXBc2 strain by using the Clustal
W subroutine of the MEGA 5.2 software.

Entropy determination
The softwares Entropy-one and Entropy-two available
from the Los Alamos HIV database were employed to
localize non-conserved regions of gp41 by evaluating
Shannon’s entropy (Sk) for each aligned position:

Sk ¼
X

r

f r; kð Þ log2 f r; kð Þ

where f(r, k) is the frequency of the residue r at position
k. Entropy differences between groups at site k were

calculated as SkB-SkA, where A and B designate either
R5, X4, or R5X4 virus sequences. The entropy per site
Sk and the mean entropy SM for a set of sequences sat-
isfy the relation

SM ¼ 1
N

XN

k¼1

Sk

where N is the total number of sites considered in the
analysis.

Statistical analysis
Independence of the HI or Q distributions at a given
amino acid position between coreceptor groups was deter-
mined by the Mann–Whitney U test. On the other hand,
the hypothesis of linkage of coreceptor usage with the
hydrophobic/hydrophilic or charged/uncharged character
of residues was tested by means of a χ2 analysis. Correc-
tion for multiple tests was performed by means of
Benjamini-Hochberg procedure [46] by considering either
false discovery rates QFD = 0.05 and QFD = 0.10.

Correlation analysis
A covariance analysis was performed on HI and Q
values for pairs of statistically significant positions. Co-
variation was expressed in terms of Pearson’s correlation
coefficient r.

Additional files

Additional file 1: Table S1. Variability (entropy) and statistical
correlation between coreceptor usage and hydropathy index of gp41
residues. (DOCX 30 kb)

Additional file 2: Table S2. Statistical correlation between coreceptor
usage and charge of gp41 residues (DOCX 19 kb)

Additional file 3: Table S3. Pearson’s correlation coefficients (r) for
charge in gp41 alignments of R5, X4, and R5X4 sequences (DOCX 14 kb)

Additional file 4: Figure S1. Gp41 coordinates - Homology model
(PDB 598 kb)
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