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METHODOLOGY

Consensus Diversity Plots: a global 
diversity analysis of chemical libraries
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Abstract 

Background:  Measuring the structural diversity of compound databases is relevant in drug discovery and many 
other areas of chemistry. Since molecular diversity depends on molecular representation, comprehensive chemoin‑
formatic analysis of the diversity of libraries uses multiple criteria. For instance, the diversity of the molecular libraries is 
typically evaluated employing molecular scaffolds, structural fingerprints, and physicochemical properties. However, 
the assessment with each criterion is analyzed independently and it is not straightforward to provide an evaluation of 
the “global diversity”.

Results:  Herein the Consensus Diversity Plot (CDP) is proposed as a novel method to represent in low dimensions 
the diversity of chemical libraries considering simultaneously multiple molecular representations. We illustrate the 
application of CDPs to classify eight compound data sets and two subsets with different sizes and compositions using 
molecular scaffolds, structural fingerprints, and physicochemical properties.

Conclusions:  CDPs are general data mining tools that represent in two-dimensions the global diversity of com‑
pound data sets using multiple metrics. These plots can be constructed using single or combined measures of diver‑
sity. An online version of the CDPs is freely available at: https://consensusdiversityplots-difacquim-unam.shinyapps.io/
RscriptsCDPlots/.

Keywords:  Chemical space, Data mining, Molecular fingerprints, Molecular scaffolds, Physicochemical properties, 
Shannon entropy, Structural diversity

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Quantification of the chemical diversity in compound 
libraries is an important aspect in several areas of chem-
istry having a major impact in library acquisition, design, 
and selection for high-throughput screening (HTS) [1]. 
In drug discovery, assessment of the chemical diversity 
is crucial when it is desirable to explore novel regions of 
the medicinally relevant chemical space [2] or to keep the 
balance between diversity and novelty [3].

Multiple structural representations are needed for a 
comprehensive assessment of the diversity of compound 
libraries. There are several reports in which the diver-
sity of compound data sets is analyzed using molecular 

scaffolds, structural fingerprints, and/or physicochemical 
properties [4–6]. This is because each representation has 
its own advantages and disadvantages: molecular scaf-
folds are straightforward to interpret but they capture 
part of the chemical structure, missing the information 
given by side chains [7]; structural fingerprints usually 
capture the information of the entire structure but are 
harder to interpret [8]. Whole molecular properties such 
as physicochemical properties are easy to interpret and 
are the basis of several drug- and lead-like empirical rules 
[9, 10]. However, these properties do not always distin-
guish the collections e.g., it is not uncommon for differ-
ent compounds to share very similar property profiles. As 
such, considering multiple structure representations pro-
vides a broader picture of the diversity of the compounds 
libraries. However, the structural diversity calculated 
with each different criterion is analyzed independently 
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and it is not straightforward to have a total perspective of 
the herein called “global diversity”.

As part of a continued effort to characterize the struc-
tural diversity of compound libraries in a combined man-
ner, Consensus Diversity Plots (CDPs) are introduced 
in this work, representing a novel approach to compare 
the diversity of compound libraries considering three 
different structural representations simultaneously. To 
illustrate the application of CDPs the chemical diversity 
of eight compound databases and two subsets was ana-
lyzed using molecular scaffolds, structural fingerprints, 
and physicochemical properties. Scaffold diversity was 
assessed using counts, cyclic system recovery curves, 
and Shannon entropy (SE) [11] Fingerprint-based diver-
sity was evaluated employing MACCS keys [12] and 
Extended Connectivity [13]/Tanimoto similarity, the 
diversity of physicochemical properties was assessed 
based on the Euclidean distance of the property profile of 
six properties frequently used in drug discovery [14, 15]. 
CDPs are general tools that can be built using other met-
rics and structural representations. Herein it is demon-
strated that CDPs were able to differentiate the molecular 
libraries by global diversity.

Methods
Consensus Diversity Plot
Figure  1 depicts a prototype CDP. Scaffold diversity is 
plotted along the vertical axis and fingerprints diversity 

is plotted along the horizontal axis. A data point in the 
graph represents a compound data set. An additional 
diversity criterion such as physicochemical properties 
can be mapped in the CDPs with a continuous or cat-
egorical color scale. To aid in the interpretation of the 
plots, CDPs can be roughly divided into four quadrants 
(i.e., dashed lines) that classifies data sets as high/low 
diverse considering both, fingerprints and scaffolds. 
The scaffold diversity can be measured using metrics 
obtained from the cyclic system recovery (CSR) curves 
such as area under the curve (AUC), the fraction of scaf-
folds to retrieve 50% of the database (F50), or other met-
rics. As discussed in this manuscript, low AUC values 
point to high scaffold diversity whilst the opposite is true 
for F50 values.

For a broader comparison of the structural diversity 
of data sets, more than one plot can be generated using 
different metrics e.g., different measures of scaffold and 
fingerprint diversity. This would give rise to a series of 
CDPs that can be visually depicted in a single composite 
figure.

Data sets
We compared data sets with different size (between 76 
and 2500 compounds), types and source of molecules 
(e.g., small and large data sets, cyclic and acyclic; natu-
ral products and synthetic). The broad composition of 
the libraries was used to explore the ability of the CDPs 
to distinguish the compound collections using three cri-
teria: molecular scaffolds, structural fingerprints, and 
physicochemical properties. Table  1 reports the num-
ber of unique compounds after data curation that was 

Fig. 1  Prototype Consensus Diversity Plot. Scaffold diversity is plot‑
ted along the vertical axis and the fingerprints diversity is plotted 
along the horizontal axis. The thresholds (dashed lines) can be set 
depending on the metric used to quantify the diversity on each axis

Table 1  Compound data sets analyzed in this work

a  Number of unique compounds

Data set Sizea Source

Natural products screening 
compounds (MEGx)

2500 ac-discovery.com

Semi-synthetic screening 
compounds (NATx)

2500 ac-discovery.com

Generally Recognized as 
Safe (GRAS)

2249 [17, 18]

GRAS subset  
(cyclic systems)

1195 [17, 18]

Carcinogenic 738 monographs.iarc.fr/ENG/Classifi‑
cation/index.php, [22]

Carcinogenic subset  
(cyclic systems)

544 monographs.iarc.fr/ENG/Classifi‑
cation/index.php, [22]

Anticancer drugs 76 [19]

Non-anticancer drugs 1399 [19]

Compounds in clinical trials 
(Clinical)

713 [21]

Epigenetic focused 850 selleckchem.com
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performed with the wash module of Molecular Operat-
ing Environment (MOE), version 2014.0 [16]. Data cura-
tion involved disconnecting metal salts, removing simple 
components, and rebalancing protonation states.

Compound databases, shown in Table  1, included two 
commercial libraries from AnalytiCon, one with natu-
ral products containing mostly compounds derived from 
plants (MEGx), and the second with semi-synthetic mole-
cules (NATx). These two collections are formatted for HTS, 
and reported as highly diverse by AnalytiCon. We also 
included 2249 compounds based on the Flavor and Extract 
Manufacturers Association of the United States—FEMA—
GRAS list (hereafter referred to as ‘GRAS’) [17, 18]. Of 
note, GRAS compounds have broad applications in the 
food industry (and recently in drug discovery) but its diver-
sity has been explored on a limited basis. Additional mol-
ecules were FDA drugs obtained from DrugBank Version 
4.0 [19, 20]. These compounds were divided in 76 approved 
drugs to treat cancer (hereafter referred to as ‘anticancer 
drugs) and 1399 non-anticancer drugs. Other data sets ana-
lyzed were 713 compounds in clinical trials reported in the 
Therapeutic Target Database, TTD [21], 850 compounds 
from a commercial collection focused on epigenetic tar-
gets (hereafter referred to as ‘Epigenetic focused’), and 738 
carcinogenic compounds reported by the International 
Agency for Research on Cancer—IARC—volumes 1–116, 
considering only substances classified as carcinogenic, 
probably and possibly carcinogenic (http://monographs.
iarc.fr/ENG/Classification/index.php) and from the Carci-
nogenic Potency Database—CPDB [22].

Molecular scaffolds and acyclic molecules
The term scaffold is used extensively to describe the core 
structure of a molecule. Different approaches to obtain 
the scaffold of a molecule in a consistent manner have 
been reviewed elsewhere [23, 24]. In this work, the scaf-
folds were derived with the methodology described by 
Johnson and Xu. The definition of scaffold used in this 
study is illustrated in Additional file 1: Figure S1. In this 
study, both acyclic and cyclic systems (hereafter referred 
to as chemotypes) were considered. However, to further 
characterize the behavior of the data sets containing 
more acyclic systems, GRAS and the Carcinogenic, the 
diversity of these data sets was also assessed removing 
acyclic systems. These subsets, hereafter referred to as 
GRAS subset and Carcinogenic subset, were compared to 
the data sets containing all the chemotypes (Table 1). The 
chemotypes were calculated with the program Molecular 
Equivalent Indices (MEQI) [25] and a code of five char-
acters was assigned to each chemotype using a unique 
naming algorithm [26]. The program MEQI has been 
extensively used to conduct scaffold diversity analysis of 
compound databases [7, 27, 28].

Chemotype diversity
For each data set the number of chemotypes was 
recorded as well as the number of chemotypes containing 
only one compound i.e., singletons. The fraction of chem-
otypes and singletons relative to the number of molecules 
in the data set was computed.

Cyclic system retrieval (CSR) curves
CSR curves were plotted for each data set to analyze 
the distribution of the chemotypes [5]. To generate the 
CSR curves, the fraction of chemotypes is plotted on the 
X-axis and the fraction of compounds that contain those 
chemotypes is plotted on the Y-axis. CSR curves were 
further characterized calculating the values of AUC and 
F50. These metrics have been used to quantify scaffold 
diversity [11, 29].

Shannon entropy (SE)
The application of SE to design diverse chemical librar-
ies and measure scaffold diversity has been reported 
[11]. In contrast to scaffold counts and CSR curves that 
consider the diversity of the entire library, SE can be 
focused on analyzing the diversity of a given n number 
of the most populated scaffolds [30]. The SE of a popula-
tion of P compounds distributed in n systems is defined 
as:

where pi is the estimated probability of the occurrence 
of a specific chemotype i in a population of P com-
pounds containing a total of n acyclic and cyclic sys-
tems, and ci is the number of molecules containing a 
particular chemotype. The value of SE ranges from 0, 
when all the compounds have the same chemotype (i.e., 
minimum diversity), to log2n, when all the compounds 
are evenly distributed among the n acyclic and/or cyclic 
systems (i.e., maximum diversity).

To normalize SE to the different n the scaled Shannon 
entropy (SSE) is defined as:

Therefore, SSE values range from 0 (minimum diver-
sity) to 1.0 (maximum diversity). To test the dependence 
of SSE with several maximum numbers of chemotypes, 
different numbers of n (e.g., 5–70) were considered. In a 
previous work a limited and arbitrary number of n most 
populated cyclic systems was explored [11].

(1)SE = −

n
∑

i=1

pilog2pi

(2)pi =
ci

P

(3)SSE =

SE

log2n

http://monographs.iarc.fr/ENG/Classification/index.php
http://monographs.iarc.fr/ENG/Classification/index.php
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Structural fingerprints
For all pairs of compounds, the pairwise structural 
diversity was assessed with Molecular ACCess System 
(MACCS) keys (166-bits) [12] and Extended Connectivity 
Fingerprints (ECFP_4) [13] using the Tanimoto similar-
ity coefficient [31]. The fingerprints were calculated with 
MayaChem Tools (http://www.mayachemtools.org/) and 
R Studio scripts [32]. MACCS keys/Tanimoto is a broadly 
used method to assess the diversity of compound data 
sets. However, CDPs can be generated using any other 
fingerprint representation or combination of them. Also, 
similarity coefficients other than Tanimoto [33] can be 
used.

Physicochemical properties
Six properties of pharmaceutical relevance were calculated 
with MOE: hydrogen bond donors (HBD), hydrogen bond 
acceptors (HBA), the octanol and/or water partition coef-
ficient (logP), molecular weight (MW), topological polar 
surface area (TPSA) and number of rotatable bonds (RTB). 
In MOE, the six properties have the following notation: a_
don, a_acc, SlogP, Weight, TPSA, and b_rotN, respectively. 
These molecular descriptors have been used to measure the 
diversity of compound databases [34–36]. The distance (or 
dissimilarity) between any two data sets, Du and Dv, was 
computed using the Euclidean distance function [31] as fol-
lows. Let xi be the N-dimensional vector of physicochemi-
cal properties for molecule i in dataset Du; similarly, let yj 
be the N-dimensional vector of physicochemical properties 
for molecule j in dataset Dv. (In the analyses of this article, 
six physicochemical properties were used so N = 6.) Let 
the number of molecules in data sets Du and Dv be U and 
V respectively. Then the inter-data set distance Iuv between 
data sets Du and Dv, as introduced in [37], was computed 
as:

In the special case when u = v, Iuv is known as the intra-
data set distance. Note that other sets of physicochemical 
properties can be used to produce CPDs. And also note 
that other distance functions can be used; comprehensive 
lists of distance functions are given in [38, 39].

Results and discussion
As discussed in the “Methods” a key aspect of the CDPs is 
the quantification of the diversity of the data sets using dif-
ferent representations. In the following step, single metrics 

Iuv =
1

UV

U
∑

i=1

V
∑

j=1

euclidean
(

xi − yj
)

,

euclidean (xi, yj) =

√

√

√

√

N
∑

k=1

(xik − yjk)
2.

are selected to build the CDP (Fig. 1). This section is organ-
ized in four major parts: the first three show and discuss the 
results of the diversity of the eight compound databases and 
two subsets in terms of molecular scaffolds, fingerprints and 
physicochemical properties, respectively. The fourth section 
discusses the CDPs of the data sets and subsets.

Diversity with molecular scaffolds
The scaffold diversity was assessed using frequency 
counts, CSR curves, and SSE.

Frequency counts
Table  2 summarizes the results of the scaffold counts, 
viz.; the number of chemotypes (N) in each set, the frac-
tion of chemotypes relative to the number of molecules 
in each set (N/M) and the number and fraction of single-
tons (Nsing).

The data sets containing drugs approved by the FDA to 
treat cancer, Clinical and Epigenetic focused had the largest 
proportion of chemotypes relative to the number of mole-
cules (N/M) and the largest proportion of singletons relative 
to the number of molecules (Nsing/M), greater than 0.84 and 
0.78, respectively. Interestingly, the library with approved 
drugs to treat cancer, which has the lowest number of com-
pounds (78, see Table 1), is the most diverse considering the 
proportion of singletons relative to the number of molecules 
(Nsing/M = 0.855) and the number of chemotypes relative 
to the number of compounds (N/M = 0.921). Surprisingly, 
GRAS, NATx, MEGx, the largest data sets (with more 
than 2000 compounds), had the lowest scaffold diversity as 
measured by the small proportion of singletons relative to 
the total number of scaffolds (Nsing/N lower than 0.69) and 
relative to the total number of molecules (Nsing/M lower 
than 0.26). Similar trends can be deduced from the frac-
tion of scaffolds relative to the total number of molecules 
(N/M) summarized in Table 2. As indicated in the “Meth-
ods” section, GRAS is a large collection of compounds used 
in the food industry; NATx and MEGx are commercial data 
sets of natural products (available for HTS). As expected, 
after removing all the acyclic systems from GRAS and the 
carcinogenic data sets, their N/M and Nsing/M increased 
(Table 2). However, comparing the diversity of all the data 
sets the relative diversity order did not change decreas-
ing in the following order: anticancer drugs  >  epigenetic 
focused  >  clinical  >  non-anticancer drugs  >  carcinogenic 
subset  >  carcinogenic  >  MEGx  >  NATx  >  GRAS sub-
set > GRAS. Based on the scaffold results, GRAS would be 
the least diverse data set.

CSR curves
As explained in detail elsewhere [36] CSR curves repre-
sent the fraction of molecules in the data set contained 
in a fraction of chemotypes. A data set with maximum 

http://www.mayachemtools.org/
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diversity would contain a different chemotype for each 
molecule in the library and the curve would be a diagonal 
with AUC of 0.5. As the scaffold diversity decreases the 
curve will move away from the diagonal. The minimum 
diversity would be a data set where all the compounds 
have the same chemotype. In this case, the CSR would be 
a vertical line with AUC equal to 1.0.

Figure  2 shows the CSR curves for the data sets and 
subsets. The curves for the approved anticancer drugs, 
Clinical and Epigenetic focused indicate large diversity 
e.g., curves close to the diagonal. In contrast, the curves 
for GRAS and Carcinogenic, followed by MEGx and 

NATx, indicate lower diversity. The curves for GRAS and 
carcinogenic improved significantly after removing the 
acyclic systems, particularly for Carcinogenic.

Table 2 summarizes the AUC and F50 values that were 
used to compare the curves for each set quantitatively. 
Consistent with the shape of the curves, anticancer drugs, 
Clinical and Epigenetic focused showed the lowest AUC 
values (lower than 0.580) and also the largest F50 values 
(close or larger than 0.409). High F50 values mean that 50% 
of the compounds in the data sets are contained in a large 
number of scaffolds: for instance, 50% of the anticancer 
drugs were distributed in 46% of the scaffolds (Table  2). 
For comparison, 50% of GRAS compounds (the least 
diverse set) were contained in 0.4% of the total scaffolds.

According to the AUC and F50 values as measures of 
scaffold diversity, GRAS followed by Carcinogenic were 
the least diverse (Table 2). The low diversity of GRAS and 
Carcinogenic data sets is due to that 46.9 and 26.3% of 
the molecules in these data sets, respectively, share the 
same chemotype. The AUC and F50 for the GRAS subset 
were better than the AUC and F50 calculated for GRAS, 
which includes acyclic and cyclic systems; yet after 
removing the acyclic systems this data set is still the least 
diverse by scaffolds. When it comes to the Carcinogenic 
subset, its AUC and F50 improved, making it change from 
being one of the least diverse data sets to becoming mod-
erately diverse by scaffolds.

Overall, the scaffold-diversity assessments measured 
with scaffold counts and CSR curves were in agreement 
showing that the anticancer drugs data set was the most 
diverse (despite it being the smallest data set), whilst the 
GRAS and GRAS subset data sets were the least diverse.

Scaled Shannon entropy
CSR curves are useful to compare the chemotype diver-
sity of data sets, however, they do not provide informa-
tion concerning the distribution of compounds in each 

Table 2  Summary of scaffold diversity analysis

N number of chemotypes, M number of molecules, Nsing number of singletons, AUC area under the curve, F50 fraction of chemotypes that contains 50% of the data set

Data set N N/M Nsing Nsing/N Nsing/M AUC F50

MEGx 935 0.374 642 0.687 0.257 0.781 0.072

NATx 799 0.320 400 0.501 0.160 0.768 0.116

GRAS 238 0.106 150 0.630 0.067 0.926 0.004

GRAS subset 237 0.198 150 0.633 0.126 0.867 0.021

Carcinogenic 262 0.355 195 0.744 0.264 0.800 0.031

Carcinogenic subset 261 0.480 195 0.747 0.450 0.737 0.107

Anticancer drugs 70 0.921 65 0.929 0.855 0.537 0.457

Non-anticancer drugs 844 0.572 686 0.813 0.465 0.699 0.157

Clinical 603 0.846 565 0.937 0.792 0.576 0.409

Epigenetic focused 727 0.855 666 0.916 0.784 0.569 0.415

Fig. 2  Scaffold retrieval curves (CSR) curves for the data sets studied 
in this work. Area under the curve (AUC) and fraction of chemotypes 
required for retrieving 50% of the compounds in the data sets (F50) 
are summarized in Table 2
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chemotype or in the most populated chemotypes [11]. 
The distribution of the compounds in the most populated 
chemotypes was analyzed with the SSE as described in 
“Methods”. For all the sets, we studied up to the first 70 
most populated chemotypes considering the total num-
ber of chemotypes in the data set with approved drugs to 
treat cancer, which was the most diverse set according to 
chemotype counts and CSR curves. SSE is a measure of 
the specific distribution of molecules in a given number 
of chemotypes. A small value of SSE indicates that the 
molecules are distributed in a small number of differ-
ent chemotypes (lower diversity). A value of SSE closer 
to one indicates that the molecules are evenly distributed 
in the different chemotypes (higher diversity). Figure  3 
summarizes the results of SSE at different numbers of the 
most populated chemotypes. The values of each data set 
are in the Additional file 1: Table S1.

Figure 3 reveals that there was not a dramatic depend-
ence of SSE with the number of n most populated 
scaffolds. Taking together all the SSE values at differ-
ent number of scaffolds (SSE5–SSE70) it can be con-
cluded that the scaffold diversity of the eight data 
sets, as captured by SSE, decreases in the order: anti-
cancer drugs  >  NATx  >  Epigenetic focused  >  Clini-
cal  >  MEGx  >  non-anticancer drugs  >  Carcinogenic 
subset  >  GRAS subset  >  Carcinogenic  >  GRAS. The 
diversity of GRAS and Carcinogenic did not change 
after removing the acyclic systems from the data sets. 
This relative order of diversity is in general agreement 
the rank-ordering obtained with other measures of scaf-
fold diversity discussed in previous sections. A notable 

exception, however, is the scaffold diversity of NATx: 
a data set of natural products that shows a relative high 
diversity only when the most populated cyclic systems 
are considered as is the case of SSE. Of note, as discussed 
in previous sections, NATx has a relative low scaffold 
diversity considering metrics from the CSR curves. In 
some cases, the most populated scaffolds in a data set are 
a representative sample of the composition of the data-
base being studied.

The lower diversity of the approved non-anticancer 
drugs compared to the approved drugs to treat cancer is 
an unexpected finding. It would be expected to find many 
more molecules with different chemotypes in a data set 
that contains drugs for different therapeutic uses.

Diversity with structural fingerprints
As pointed out in the Introduction, analysis of the scaf-
fold diversity does not include information on the diver-
sity of the compounds associated with the side chains. 
A good example is the GRAS data set where nearly half 
of the compounds have acyclic molecules. Therefore, 
other methods are required to complement the assess-
ment of the global diversity. One of such methods is 
the fingerprint-based diversity that provides informa-
tion on the diversity of the entire molecule. To illustrate 
this point, MACCs keys (166-bits) fingerprints, and 
ECFP were computed to determine the intermolecular 
diversity of the libraries. Other fingerprint-based rep-
resentations can be used. In this work we employed 
MACCS keys/Tanimoto (see “Methods”) because it is a 
well-known and broadly used representation to quantify 
structural diversity. Table  3 summarizes the distribu-
tions of the intra-library similarity results obtained with 
MACCS keys and Additional file 1: Table S2 summarizes 
the similarity results for ECFP. The compound data sets 
with the highest structural diversity (e.g., smaller simi-
larity values) were, in general, the carcinogenic com-
pounds (e.g., median MACCS keys/Tanimoto similarity 
of 0.229) followed by GRAS. Interestingly, these libraries 
were the least diverse when studied based solely on the 
chemotypes and their similarity values increased after 
removing the acyclic systems, which means acyclic sys-
tems contribute to the diversity of these data sets. The 
large difference between scaffold and fingerprint-based 
similarity for these libraries is because a large number of 
compounds share the same chemotype. Also remarkable 
was the high fingerprint-based diversity of the approved 
non-anticancer drugs (e.g., median MACCS keys/Tani-
moto similarity close to 0.370), that was less diverse than 
the anticancer drugs considering its scaffold diversity 
(Table  2; Fig.  2), and the high similarity values for the 
anticancer drugs (median MACCS keys/Tanimoto simi-
larity close to 0.468) classified as the second least diverse 

Fig. 3  Results of scaled Shannon entropy (SSE) at different numbers 
of most populated chemotypes
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data set with fingerprints but the most diverse data set 
by content of chemotypes. These results clearly illustrate 
the large influence of the side chains and acyclic systems 
on the assessment of the global diversity and how differ-
ent the diversity results can be depending on the method 
employed, making it hard to classify different data sets 
by their diversity analyzing the results of each metric 
separately.

The results obtained with ECFP4 (Additional file  1: 
Table S2), demonstrate that this fingerprint was not 
helpful to identify and classify data sets by their struc-
tural diversity, giving comparable similarity values. Even 
though ECFP4 have demonstrated to perform well for 
virtual screening [40], MACCS keys fingerprints per-
formed better differentiating the data sets.

Diversity with physicochemical properties
Table  4 shows the mean of all the pairwise Euclidean 
distances of the six physicochemical properties for all 
the compounds within each data set (e.g., intra-set dis-
tance). Other metrics such as the median values could 
be explored. According to these values, the most diverse 
sets were MEGx and anticancer drugs (mean Euclidean 
distance of 2.9) suggesting that these collections have, in 

general, a broad distribution of the six physicochemical 
properties. Of note, the anticancer set also had the larg-
est scaffold diversity.

CDPs of the test compound collections
From the analysis discussed so far it is not obvious to 
identify the data set with the overall highest scaffold, 
fingerprint-based, and physicochemical properties diver-
sity. To address this issue, Fig. 4 shows CDPs represent-
ing the diversity of eight compound data sets and two 
subsets studied in this work. CDPs portray the diversity 
calculated with three major molecular representations: 
molecular scaffolds, fingerprints, and physicochemical 
properties. Each data point represents one data set.

Diversity based on fingerprints and molecular scaffolds 
is represented on the X- and Y-axis, respectively. Finger-
print-based diversity is represented in these plots with 
the corresponding median of the MACCS keys/Tanimoto 
similarity of the data set. In each CDP the scaffold diver-
sity of the entire collection is represented on the Y-axis 
using AUC or F50, respectively.

In these plots, diversity based on physicochemical 
properties is represented by the intra-set Euclidean dis-
tance of the six physicochemical properties i.e., values 
in Table  4. This value is represented in the CDPs using 
a continuous color scale from red (high distance; high 
diversity), to orange/brown (intermediate diversity), to 
green (low distance; low diversity). The relative size of 
the data set is represented by the size of the data point: 
bigger points correspond to databases with more com-
pounds (Table 1).

To assist in the classification of the compound data sets 
by their global diversity, four major regions were identi-
fied in the CDPs using heuristic thresholds along the 
X- and Y-axis, respectively. In this work, the thresholds 
were defined by the median values of the distribution of 
the MACCS keys/Tanimoto similarity and AUC value of 
0.75 (as detailed in “Methods”). As per F50, we also used 

Table 3  Summary of the intra-library similarity distributions computed with MACCS keys/Tanimoto

1st Qu. first quartile, 3rd Qu. third quartile

Data set Min. 1st Qu. Median Mean 3rd Qu. Max. SD

MEGx 0 0.388 0.475 0.485 0.574 1.0 0.138

NATx 0.104 0.378 0.444 0.460 0.525 1.0 0.119

GRAS 0 0.256 0.375 0.385 0.500 1.0 0.181

GRAS subset 0.016 0.269 0.38 0.385 0.487 1.0 0.161

Carcinogenic 0 0.135 0.229 0.244 0.333 1.0 0.151

Carcinogenic subset 0.014 0.180 0.269 0.284 0.370 1.0 0.144

Anticancer drugs 0.065 0.362 0.468 0.460 0.562 1.0 0.139

Non-anticancer drugs 0 0.283 0.370 0.373 0.458 1.0 0.130

Clinical 0 0.345 0.438 0.432 0.522 1.0 0.128

Epigenetic focused 0.039 0.344 0.430 0.431 0.516 1.0 0.123

Table 4  Mean of  the intra-set Euclidean distance of  six 
physicochemical properties

Data set Euclidean distance

MEGx 2.95

NATx 1.07

GRAS 1.00

Carcinogenic 2.22

Anticancer drugs 2.90

Non-anticancer drugs 2.50

Clinical 2.62

Epigenetic focused 2.10
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the corresponding median value of all the sets (0.111). We 
would like to point out that other values can be explored 
to define the thresholds. Moreover, as discussed in “Meth-
ods” (prototype plot in Fig. 1), these plots are useful even 
in the absence of thresholds: the most relevant feature 
of the CDPs is that they enable to visually represent the 
diversity of compound data sets in low dimensions.

The quadrants in red, Fig.  4 and Additional file  1:  
Figure S3, identify compound data sets with high finger-
print-based diversity i.e., low median MACCS and ECFP4/
Tanimoto similarity and high scaffold diversity e.g., low 
AUC or high F50. The quadrants in white identify data sets 
with relative low fingerprint-based diversity and lower scaf-
fold diversity. In other words, data sets in the red or white 
quadrants are collections with the relative highest or low-
est, respectively, fingerprint-based and scaffold diversity 
combined. The quadrants in blue locate data sets with 

high fingerprint-based diversity but low scaffold diversity. 
This means that the structural diversity of the compound 
data sets located in this region is driven mostly by the side 
chains or, as it was observed with the subsets from GRAS 
and Carcinogenic, by the acyclic systems. Finally, the quad-
rants in yellow identify compound libraries with low fin-
gerprint-based diversity but high scaffold diversity. In this 
case, the major contributors to the diversity are the molec-
ular scaffolds (or the proportion of acyclic systems present). 
Of note, the diversity in terms of physicochemical proper-
ties and the size of the library do not determine the posi-
tion of the data sets in the quadrants but provide additional 
information.

Since three types of diversity (based on scaffolds, fin-
gerprints and properties) are represented in the CPDs 
with a single value each, these plots do not capture the 
entire profile of, for example, scaffold diversity. In other 

Fig. 4  Consensus Diversity Plots (CDPs) for the eight data sets and two subsets studied in this work. CDPs in this figure classify the compound 
data sets considering molecular scaffolds, fingerprint representations, and physicochemical properties. Each data point represents a compound 
set. Fingerprint-based diversity is plotted on the X-axis. Scaffold diversity is represented in the Y-axis plotting area under the curve (AUC) or F50. 
The quadrants in red identify compound data sets with high fingerprint-based diversity, the quadrants in white identify data sets with relative low 
fingerprint-based diversity and lower scaffold diversity; the quadrants in blue locate data sets with high fingerprint-based diversity but low scaffold 
diversity; and the quadrants in yellow identify compound libraries with low fingerprint-based diversity but high scaffold diversity. Data points are 
colored by the diversity of the physicochemical properties of the data set as measured by the Euclidean distance of six properties of pharmaceutical 
relevance. The distance is represented with a continuous color scale from red (more diversity), to orange/brown (intermediate diversity) to green (less 
diversity). The relative size of the data set is represented with the size of the data point: smaller data points indicate compound data sets with fewer 
molecules. In this application example of the plots, a value of 0.75 for AUC and the median values of the distribution of F50 and MACCS/Tanimoto 
similarity were used to set the quadrants
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words, the visual representation of several different types 
of diversity in a single plot (that is the high value of the 
CDPs) comes with the cost that some information is lost.

According to the CDPs in Fig. 4, non-anticancer drugs 
are the most diverse set considering MACCS keys and 
chemotypes when metrics of scaffold diversity of the 
entire collection are considered (AUC and F50). Antican-
cer drugs have an intermediate diversity considering the 
physicochemical properties (orange-to-red data point). 
In contrast, the natural product data sets MEGx and 
NATx are, relative to the other data sets, the least diverse 
considering MACCS keys and molecular scaffolds. Of 
note, these two data sets have the largest number of com-
pounds as depicted by the relative bigger size of the data 
points. These results further illustrate that the size of the 
library is not necessarily correlated with the structural 
diversity [11].

CDPs in Fig.  4 visually emphasize that despite the 
fact that MEGx and NATx sets have similar values of 
fingerprint-based and scaffold diversity, they have very 
different diversity in terms of physicochemical proper-
ties: MEGx (data point in red) is one of the most diverse 
sets whilst NATx (data point in green) is one of the least 
diverse. By analogy with the concept of activity [41] and 
property cliffs [42] this observation could be associated 
with a multiple-diversity cliff: compound collections that 
share similar diversity according to molecular represen-
tations (e.g., scaffold and fingerprints) but have opposite 
diversity considering other representation (e.g., physico-
chemical properties). The quite different diversity profile 
of MEGx and NATx is in agreement with the notion that 
synthetic and semi-synthetic compounds (NATx) are, on 
average, less diverse than natural products (MEGx). This 
is because, in general, semi-synthetic compounds such 
as NATx are designed within the constraints of drug-like 
empirical rules.

The relative position of GRAS and Carcinogenic sets 
in the CDPs (quadrant in blue) indicates that both com-
pound collections have relative low MACCs keys/Tani-
moto similarity but low chemotype diversity (e.g., high 
AUC or low F50 values). Indeed, as discussed previously 
in this study, GRAS and Carcinogenic have a large pro-
portion of molecules with a single chemotype, i.e., acy-
clic systems. After removing the acyclic systems from 
GRAS the scaffold diversity of the GRAS subset did not 
change significantly, however the structural diversity 
as measured with MACCS keys/Tanimoto decreased. 
Something similar occurred with the carcinogenic sub-
set, after removing the acyclic systems the similar-
ity increased, however the scaffold diversity increased, 
therefore the subset was classified as diverse by scaffolds 
and fingerprints. These results suggest structural diver-
sity in the blue quadrant, as measured with MACCS 

keys/Tanimoto, is also influenced by the acyclic systems. 
Considering physicochemical properties, both sets have a 
different diversity profile: GRAS (data point in green) has 
low diversity while Carcinogenic (data point in brown) 
has higher diversity.

Approved anticancer drugs, Epigenetic focused and 
Clinical (in quadrant in yellow) are sets with relative 
low MACCs keys/Tanimoto similarity but high scaffold 
diversity (e.g., low AUC or high F50 values). This classi-
fication suggests that the diversity of the compound data 
sets is driven by the scaffolds. The large scaffold diversity 
of anticancer drugs contrasts with the relative small size 
of the data set. This result further emphasizes the con-
venience of using multiple features of the data sets to 
have a better and quick assessment of the global (or con-
sensus) diversity. In addition, CDPs in Fig.  3 emphasize 
that approved anticancer and non-anticancer drugs have 
different profiles of diversity, including physicochemi-
cal properties. Putting together these observations with 
previous analyses comparing approved anticancer and 
non-anticancer drugs [34] confirm that concepts such as 
“drug-likeness” highly depend on the type of drugs being 
analyzed.

Additional file  1: Figure S2 shows CDPs using ECFP4 
to measure fingerprint diversity. As it can be observed 
on these plots this fingerprint was unable to differentiate 
the diversity of anticancer drugs, Clinical and Epigenetic 
focused data sets. Therefore this metric was not chosen 
to classify these data sets. Of note, CDPs can be built 
using other fingerprints or combination of them, depend-
ing on the data sets being analyzed.

CDPs based on scaffold diversity focused on the most 
populated cyclic systems
We further explored the representation of the global 
diversity of the data sets generating CDPs using meas-
ures of scaffold diversity based on the most populated 
scaffolds e.g., SSE5 and SSE70. The plots are shown in 
Additional file 1: Figure S3. To generate the quadrants in 
these plots the median of the distribution of the SSE5 and 
SSE70 were used (0.758 and 0.833, respectively). In gen-
eral, the relative classification of the eight data sets was 
comparable to the CDPs using the metrics AUC and F50. 
One of the few but notable differences was the relative 
classification of approved non-anticancer drugs (chang-
ing its position from the red to the blue quadrant), as it 
was observed before this data set is not one of the most 
diverse by scaffolds (Table 2) but it is diverse by finger-
prints (Table 3). Therefore, this data set diversity could be 
given mostly by its side chains and it can be found on the 
blue or red quadrant depending on the scaffold metric 
employed. The second difference was the classification of 
NATx modifying its position in the CDPs from the white 
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to the yellow quadrant. This modification is due to these 
data sets different scaffold diversity considering only the 
5 or up to 70 of the most populated scaffolds as compared 
to the diversity of the entire collections. All other six data 
sets kept the same relative position in the CDPs. These 
results indicate that different measures of scaffold diver-
sity can be used in a CDP. The most appropriate measure 
will depend on the specific goals of the project.

As discussed throughout the manuscript CDPs provide 
a comprehensive representation of the structural diver-
sity of the compound data sets, despite the fact that these 
plots do not provide inter-library relationship. However, 
such analysis can be conducted separately using other 
established approaches [43, 44].

Conclusions
Consensus Diversity Plots (CDPs) are data mining tools 
that represent in two-dimensions the global diversity 
of compound data sets using multiple metrics. CDPs 
are useful to compare and classify chemical librar-
ies. The specific applications depend on goals of the 
study. For example, to identify new hits it is desirable 
to screen diverse libraries. According to the similar-
ity principle, to optimize hits might be preferable to 
screen focused libraries that resemble the structure of 
the hit compounds. Herein was shown the application 
of CDPs to represent the global diversity of eight test 
data sets. Three features frequently used to character-
ize the diversity of chemical libraries were considered: 
molecular scaffolds, fingerprints, and physicochemi-
cal properties. In addition, the size of the data sets 
was mapped in the plots. CDPs are general and can be 
constructed using any molecular similarity method or 
scaffold diversity metric. A limitation of the current 
version of these plots, in particular the definition of 
thresholds for high/low scaffold or fingerprint-based 
diversity, is that they depend on the data sets being 
compared. Of the test data sets analyzed in this work, 
CDPs identified the approved non-anticancer drugs as 
the set with the highest combined scaffold and MACCS 
keys/Tanimoto similarity. The diversity profile of this 
set is considerably different from the global diversity of 
the approved anticancer drugs. Surprisingly, CDPs also 
identified two large data sets of natural products com-
mercially available (derived from plants and semi-syn-
thetic compounds, respectively) as the least diverse sets 
relative to the other six compound collections. More-
over, CDPs visually depicted the dramatic difference 
in the diversity of the physicochemical properties of 
these two data sets despite the fact that the two natural 
product collections have similar profiles of scaffold and 
fingerprint-based diversity. CDPs also identified GRAS 
and carcinogenic as compound sets with low scaffold 

diversity but large fingerprint-based diversity indicat-
ing that the diversity is mainly associated with the acy-
clic systems. Similarly, there were data sets with high 
scaffold-diversity but relatively low fingerprint-based 
diversity indicating that the diversity of such data sets 
(e.g., approved anticancer drugs) is due mostly to the 
molecular scaffolds. Finally, CDPs further illustrated 
that the size of the data set is not necessarily associated 
with the global diversity.

Since CDPs are general tools other meaningful similar-
ity methods can be used, for instance, consensus meas-
ures of fingerprint-based similarity [45]. In addition, 
depending on the goals of the project, different thresh-
olds can be implemented to define high/low fingerprint-
based diversity and scaffold diversity. A major perspective 
of this work is to develop a consensus measure of global 
diversity. Efforts in this direction are being undertaken in 
our research group.
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