MINING THE EPI-RELEVANT CHEMICAL SPACE:

SEARCHING FOR NOVEL BROMODOMAIN INHIBITORS, **USING FLEXIBLE ALIGNMENT AND DOCKING**

FACQUIN

Fernando D. Prieto-Martíneza*, Mario Figueroaa, Nicholas H. Oberliesb, José L. Medina-Francoa*

idad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México. ⁶ Department of Chemistry and Bio rth Carolina at Greensboro. P.O. Box 26170. Greensboro. North Carolina 27402. United States

*Corresponding authors: ferdpm4@hotmail.com; medinajl@unam.mx

Recently the field of epigenetics has grown significantly. However as of today few studies have focused on the context of this information. The epigenetically relevant chemical space (ERCS) with special attention to BRDi, HDACi and DNMTi has been previously presented¹. In the light of found similarities with approved drugs and GRAS compounds a virtual screening was conducted for BRDi using fungal metabolites², alkaloids, and others.

BACKGROUND

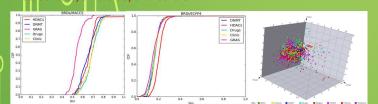


Figure 1. Chemography of ERCS, a) Interlibrary similarities calculated with MACCS keys in MOE; b) Interlibrary similarities calculated from Extended Connectivity fingerprints (ECFP4); c) Chemical space representation by PCA from SlogP, TPSA and molecular weight.

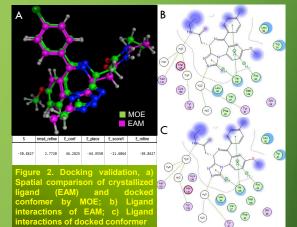
Methods

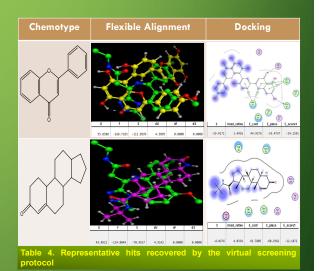
- Querie searches were conducted for the data sets listed in Table 1
 - For 2D similarity comparison, MACCS keys and Extended Connectivity Fingerprints (ECFP4) were used.
- Additional hits were obtained by 3D flex-allignment to diverse ligands of BRDs obtained from PDB⁴.
- Potential hits were docked to BRD4 structure for cross validation of selected compounds.

	Data set	Size (number	Number of	Source	URL/ Reference
		of	unique		
		compounds)	molecules		
	FDA Drugs	>5000	1490	Drugbank	www.drugbank.ca/drugs/
	Fungi	224	207	Fungal	González-Medina et al., 2016. Fut.
				Metabolites	Med. Chem. <i>In press</i>
	NP	365	245	Pubchem	www.pubchem.ncbi.nlm.nih.gov/
h	Benzimidazoles	91	91	In-house	Aguayo-Ortiz et al. 2014. Fut. Med.
					Chem.
	GRAS	2200	2200	FEMA	Medina-Franco et al. 2012. PLOS One

Table 1. Summary of datasets used on the current study

	\cup	RESULTS	
	PDB ID	Chemotype	BRD
$\left(\right)$	4J1P	Methoxyquinazolone	2
	5BT5	Benzimidazole	
	3S92	Benzotriazepine	3
Ì	3P5O	Benzodiazepine	4
	4CFL	Piperazinechromenone	
	4YH4	Pyrroledione	


Table 2. PDBs used as queries for virtual screening protocol


Database	Hits recovered		
FDA	70		
Fungi-NP	20		
GRAS	44		
Benzimidazole	5		

e 3. Hits recovered per data set by flexible alignment method

Almost 5000 compounds were analyzed, yielding 520 hits considering 2D and 3D similarity.

To begin the virtual screening the docking protocol was validated using PDB ID: 3P5O³

CONCLUSIONS

- Compounds with potential inhibitory capabilities against bromodomains were identified. It is worth noting that hit structures differ from currently developed inhibitors. The natural products identified in this study need further testing in the search of binding modes and lead-like characterization. Additionally steroid scaffolds recovered here may suggest hormonal regulation in BRDs and BRDT.

Acknowledgments

The authors want to thank CONACyT for scholarship grant (660465/576637), UNAM PAPIIT project (IA204016) and Programa Institucional Nuevas Alternativas de Tratamiento para Enfermedades Infecciosas (NUATEI-IIB-UNAM).

eferences: vrieto-Martínez F.D. et al., 2016. RSC Adv.6: 56225-56239; ²González-Medina et al., 2016. Fut. Med. Chem. *In press*; ³Filippakopoulos, P. et al., 2012. Bioorganic & Medicinal hemistry. 20: 1878-1886; ⁴Ferri, E., Petosa, C. & Mckenna, C.E., 2015. Biochemical Pharmacology. 106; 1-18